
1/3

October 1, 2014

You can name your car, and you can name your kernel
objects, but there is a qualitative difference between the
two

devblogs.microsoft.com/oldnewthing/20141001-00

Raymond Chen

A customer reported that the
 WaitForSingleObject
appeared to be unreliable.

We have two threads, one that waits on an event and the other
that signals the event.
But we
found that sometimes, signaling the event does not wake
up the waiting thread.
We have to
signal it twice.
What are the conditions under which
 WaitForSingleObject
will ignore a
signal?

// cleanup and error checking elided for expository purposes

void Thread1()

{

 // Create an auto-reset event, initially unsignaled

 HANDLE eventHandle = CreateEvent(NULL, FALSE, FALSE, TEXT("MyEvent"));

 // Kick off the background thread and give it the handle

 CreateThread(..., Thread2, eventHandle, ...);

 // Wait for the event to be signaled

 WaitForSingleObject(eventHandle, INFINITE);

}

DWORD CALLBACK Thread2(void *eventHandle)

{

ResetEvent(eventHandle); // start with a clean slate

DoStuff();

// All the calls to SetEvent succeed.

SetEvent(eventHandle); // this does not always wake up Thread1

SetEvent(eventHandle); // need to add this line

return 0;

}

Remember, you generally
shouldn't start with the conspiracy theory.
The problem is most

likely close to home.

People offered a variety of theories as to what may be wrong.
One possibility is that some

other code in the process is calling
 ResetEvent on the event handle.
Another is that some

other code in the process has a bug where it
is calling ResetEvent on the wrong event

https://devblogs.microsoft.com/oldnewthing/20141001-00/?p=43943
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/10/10127054.aspx

2/3

handle.

I asked about the name.

I have a friend who names her car.
Whenever she gets a new car,
she agonizes over what to

call it.
She'll drive it for a few days to see what its personality is
and eventually choose a name

that suits the vehicle.
And thereafter, whenever she refers to her car,
she uses the name.
(She

also assigns the car a gender.)

If you like naming your car, then that's great.
But there's a
difference between naming your

car and naming your kernel objects.
When you give your car a name, that name is just for

your private use.
On the other hand, if you give your kernel object a name,
other people can

use that name to access your object.
And once they have access to your object,
they can do

funky things to it,
like reset it.

Imagine if you decided to name your car Clara,
and any time somebody shouted,
"Clara,

where are you?"
your car horn honked.
I'm assuming your car has voice recognition software.

Also that your car has the personality of a puppy.
Work with me here.

Even scarier: Any time somebody shouted,
"Clara, open the trunk,"
your car trunk unlocked.

That's what happens when you name your kernel objects.
Anybody who knows the name (and

has appropriate access)
can open the object and start
doing things to it.
Presumably that's

why you named your kernel object in the first place:
You want this to happen.
You gave your

object a name specifically to allow other people to
come in and access the same object.

In the above example, I saw that the event had a very generic-sounding
name,
MyEvent.
That

sounds like the name that some other similarly uncreative application
developer might have

chosen.

And indeed, that was the reason.
There was another application which was creating an event

that
coincidentally has the same name,
so instead of creating a new object,
the kernel

returned a handle to the existing one.
The other application called WaitForSingleObject

on the event,
and so when the customer's program called
 SetEvent ,
it woke the other

application instead.
So this bug has a double-whammy:
Not only does it cause your program

to miss a signal,
it causes the other program to receive a signal when it wasn't
expecting one.

Two bugs for the price of one.

Note that no matter how clever you are at choosing a name for your
event,
you will always

have this problem,
because even if you called it
SuperSecretNeverGonnaFindIt75,
there's a

program out there that knows the secret name:
Namely your own program!
If you run two

copies of your program, they will both be manipulating the
same
SuperSecretNeverGonna-

FindIt75,
and then you're back where you started.
When the first copy of the program calls

SetEvent ,
it may wake up the second copy.

3/3

(This is the same principle behind the conclusion that
a single-instance program is its own

denial of service.)

Kernel objects should not be named unless you intend them to be shared,
because once you

name them, you open yourself to
issues like this.
If you name a kernel object,
it must be

because you want another process to access it,
not because you think giving it a name is kind

of cute.

I suspect a lot of people give their kernel objects names
not because they intend them to be

shared,
but because they see that the CreateEvent
function has a lpName parameter,
and

they think,
"Well, I guess giving it a name would be nice.
Maybe I can use it for debugging

purposes or something,"
not realizing that giving it name actually introduced a bug.
Another

possibility is that they see that there is a
 lpName parameter and think,
"Gosh, I must give

this event a name."

Kernel object names are optional.
Don't give them a name unless you intend them to be

shared.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2006/06/20/639479.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

