
1/2

September 29, 2014

Simulating media controller buttons like Play and Pause
devblogs.microsoft.com/oldnewthing/20140929-00

Raymond Chen

Today’s Little Program simulates pressing the Play/Pause
button on your fancy keyboard.

This might be useful if you want to write a program that converts
some other input (say,

gesture detection) into media controller events.

One way of doing this is to take advantage of the
 DefWindowProc function,
since the default

behavior for the
 WM_APPCOMMAND message is to pass
the message up the parent chain,
and if

it still can’t find a handler,
it hands the message to the shell for global processing.

Remember, don’t
fumble around.
If you want to send a message to a window,
then send a

message to a window.
Don’t broadcast a message to every window in the system
(resulting in

mass chaos).

Take the scratch program and make this simple addition:

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

if (ch == ' ') {

 SendMessage(hwnd, WM_APPCOMMAND, (WPARAM)hwnd,

 MAKELONG(0, FAPPCOMMAND_KEY | APPCOMMAND_MEDIA_PLAY_PAUSE));

}
}

HANDLE_MSG(hwnd, WM_CHAR, OnChar);

When you press the space bar in the scratch application,
it pretends that you instead pressed

the Play/Pause
button on your fancy keyboard with no shift modifiers.

The scratch program doesn’t do anything with the key,
so it ends up falling through to
 Def‐

WindowProc ,
which eventually hands the key to the shell and any other
registered shell

hooks.
If you have a program like Windows Media Player
which registers for shell events,
it

will see the notification and pause/resume playback.

Of course, this assumes that the program you want to talk to
listens globally for the keypress.

If you want to make the current foreground program respond
as if you had pressed the

Play/Pause,
you can just inject the keypress.

https://devblogs.microsoft.com/oldnewthing/20140929-00/?p=43963
http://blogs.msdn.com/b/oldnewthing/archive/2006/06/13/629451.aspx

2/2

int __cdecl main(int, char**)

{

INPUT inputs[2] = {};

inputs[0].type = INPUT_KEYBOARD;

inputs[0].ki.wVk = VK_MEDIA_PLAY_PAUSE;

inputs[0].ki.wScan = 0x22;

inputs[0].ki.dwFlags = KEYEVENTF_EXTENDEDKEY;

inputs[1].type = INPUT_KEYBOARD;

inputs[1].ki.wVk = VK_MEDIA_PLAY_PAUSE;

inputs[1].ki.wScan = 0x22;

inputs[0].ki.dwFlags = KEYEVENTF_EXTENDEDKEY | KEYEVENTF_KEYUP;

SendInput(2, inputs, sizeof(INPUT));

return 0;

}

Note, however, that since we didn’t do anything about the
state of modifier keys,
if the user

happens to have the shift key down at the time
you injected the message,
the application is

going to be told,
“Hey, do your play/pause thing, and if you change behavior
when the shift

key is down, here’s your chance.”

But what did you expect from a Little Program?

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/windows/hardware/gg463446#END
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

