
1/5

September 5, 2014

You can use a file as a synchronization object, too
devblogs.microsoft.com/oldnewthing/20140905-00

Raymond Chen

A customer was looking for a synchronization object that
had the following properties:

Can be placed in a memory-mapped file.

Can be used by multiple processes simultaneously.
Bonus if it can even be used by

different machines simultaneously.

Does not leak resources if the file is deleted.

It turns out there is already a synchronization object for this,
and you’ve been staring at it the

whole time: The file.

File locking is a very old feature that most people consider
old and busted because it’s just

one of those dorky things
designed for those clunky database systems that use tape drives

like they have in the movies.
While that may be true, it’s still useful.

The idea behind file locking is that every byte of a file
can be a synchronization object.
The

intended pattern is that a database program indicates
its intention to access a section of a file

by locking it,
and this prevents other processes from accessing that same
section of the file.

This allows the database program to update the file without
race conditions.
When the

database program is finished with that section of the file,
it unlocks it.

One interesting bit of trivia about file locking is that
you can lock bytes that don’t even exist.

It is legal to lock bytes beyond the end of the file.
This is handy in the database case if you

want to extend the file.
You can lock the bytes you intend to add,
so that nobody else can

extend the file at the same time.

The usage pattern for byte-granular file locks
maps very well to the customer’s requirements.

The synchronization object is… the file itself.
And you put it in the file by simply choosing a

byte to use
as the lock target.
(And the byte can even be imaginary.)
And if you delete the file,

the lock disappears with it.

Note that the byte you choose as your lock target need not
be dedicated for use as a lock

target.
You can completely ignore the contents of the file and simply
agree to use byte zero as

the lock target.
You just have to understand that when the byte is locked,
only the owner of

https://devblogs.microsoft.com/oldnewthing/20140905-00/?p=63

2/5

the lock can access it via the
 ReadFile and WriteFile
family of functions.
(Reading or

writing a byte that is locked by somebody
else will fail with
 ERROR_LOCK_VIOLATION .
Note

that access via memory-mapping is not subject to file locking,
which neatly lines up with the

customer’s first requirement.)

To avoid the problem with locking an actual byte,
you can choose imaginary bytes
at

ridiculously
huge offsets purely for locking.
Since those bytes don’t exist, you won’t interfere

with other code that tries to read and write them.
For example, you might agree to lock byte

0xFFFFFFFF`FFFFFFFF, on the assumption that the file will never
become four
exabytes in

size.

File locking supports the reader/writer lock model:
You can claim a lock for shared access

(read)
or for exclusive access (write).

The basic LockFile function is a subset of the
more general
 LockFileEx function,
so let’s

look at the general function.

To lock a portion of a file, you call
 LockFileEx with the range you want to lock,
the style of

lock (shared or exclusive),
and how you want failed locks to be handled.
To release the lock,

you pass the same range to
 UnlockFileEx .
Note that ranges cannot be chopped up or

recombined.
If you lock bytes 0–10 and 11–19 with separate calls,
then you must unlock them

with separate matching calls;
you can’t make a single bulk call to unlock bytes
0–19, nor can

you do a partial unlock of bytes
0–5.

Most of the mechanics of locking are straightforward,
except for the “how you want failed

locks to be handled” part.
If you specify
 LOCKFILE_FAIL_IMMEDIATELY
and the lock

attempt fails, then the call simply fails
with ERROR_LOCK_VIOLATION and that’s
the end of

it.
It’s up to you to retry the operation if that’s what you want.

On the other hand, if you do not specify
 LOCKFILE_FAIL_IMMEDIATELY ,
and the lock

attempt fails,
then the behavior depends on whether the handle is
synchronous or

asynchronous.
If synchronous, then the call blocks until the lock is acquired.
If

asynchronous, then the call returns immediately with
 ERROR_IO_PENDING , and the I/O

completes
when the lock is acquired.

The documentation in MSDN on how lock failures are handled is
a bit confusing, thanks to

tortured sentence structure like
“X behaves like Y if Z unless Q.”
Here is the behavior of lock

failures in table form:

If LockFileEx fails

Handle type

Asynchronous Synchronous

http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx

3/5

LOCKFILE_FAIL_IMMEDIATELY
specified

Returns FALSE immediately.
Error code is ERROR_LOCK_VIOLATION .

LOCKFILE_FAIL_IMMEDIATELY
not specified

Returns FALSE
immediately.

Error code is
ERROR_IO_PENDING .

I/O completes when
lock is acquired.

Blocks until lock is acquired,
returns TRUE .

Here’s a little test app that exercises all the options.
Run the program with two command line

options.
The first is the name of the file you want to lock,
and the second is a string

describing what kind of lock
you want.
Pass zero or more of the following letters:

“o” to open an overlapped (asynchronous) handle; otherwise,
it will be opened non-

overlapped (synchronous).

“e” to lock exclusively; otherwise, it will be locked shared

“f” to fail immediately; otherwise, it will wait

For example, you would pass “ef” to open a synchronous handle
and request an exclusive lock

that fails immediately if it cannot
be acquired.
If you want all the defaults, then pass “” as the

options.

4/5

#include <windows.h>

#include <stdio.h>

#include <tchar.h>

int __cdecl _tmain(int argc, TCHAR **argv)

{

// Ensure correct number of command line arguments

if (argc < 3) return 0;

// Get the options

DWORD dwFileFlags = 0;

DWORD dwLockFlags = 0;

for (PTSTR p = argv[2]; *p; p++) {

 if (*p == L'o') dwFileFlags |= FILE_FLAG_OVERLAPPED;

 if (*p == L'e') dwLockFlags |= LOCKFILE_EXCLUSIVE_LOCK;

 if (*p == L'f') dwLockFlags |= LOCKFILE_FAIL_IMMEDIATELY;

}
// Open the file

_tprintf(TEXT("Opening the file '%s' as %s\n"), argv[1],

 (dwFileFlags & FILE_FLAG_OVERLAPPED) ?

 TEXT("asynchronous") : TEXT("synchronous"));

HANDLE h = CreateFile(argv[1], GENERIC_READ,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL, OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL | dwFileFlags, NULL);

if (h == INVALID_HANDLE_VALUE) {

 _tprintf(TEXT("Open failed, error = %d\n"), GetLastError());

 return 0;

}
// Set the starting position in the OVERLAPPED structure

OVERLAPPED o = { 0 };

o.Offset = 0; // we lock on byte zero

// Say what kind of lock we want

if (dwLockFlags & LOCKFILE_EXCLUSIVE_LOCK) {

 _tprintf(TEXT("Requesting exclusive lock\n"));

} else {

 _tprintf(TEXT("Requesting shared lock\n"));

}
// Say whether we're going to wait to acquire

if (dwLockFlags & LOCKFILE_FAIL_IMMEDIATELY) {

 _tprintf(TEXT("Requesting immediate failure\n"));

} else if (dwFileFlags & FILE_FLAG_OVERLAPPED) {

 _tprintf(TEXT("Requesting notification on lock acquisition\n"));

 // The event that will be signaled when the lock is acquired

 // error checking deleted for expository purposes

 o.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

} else {

 _tprintf(TEXT("Call will block until lock is acquired\n"));

}
// Okay, here we go.

_tprintf(TEXT("Attempting lock\n"));

BOOL fRc = LockFileEx(h, dwLockFlags, 0, 1, 0, &o);

// If the lock failed, remember why.

DWORD dwError = fRc ? ERROR_SUCCESS : GetLastError();

5/5

_tprintf(TEXT("Wait %s, error code %d\n"),

 fRc ? TEXT("succeeded") : TEXT("failed"), dwError);

if (fRc) {

 _tprintf(TEXT("Lock acquired immediately\n"));

} else if (dwError == ERROR_IO_PENDING) {

 _tprintf(TEXT("Waiting for lock\n"));

 WaitForSingleObject(o.hEvent, INFINITE);

 fRc = TRUE; // lock has been acquired

}
// If we got the lock, then hold the lock until the

// user releases it.

if (fRc) {

 _tprintf(TEXT("Hit Enter to unlock\n"));

 getchar();

 UnlockFileEx(h, 0, 1, 0, &o);

}
// Clean up

if (o.hEvent) CloseHandle(o.hEvent);

CloseHandle(h);

return 0;

}

When you run this program, it will try to acquire
the lock in the manner requested,
and if the

lock is successfully acquired,
it will wait for you press Enter,
then it will release the lock.

You naturally need to run multiple copies of this program
to see how the flags interact.
(If

you run only one copy, then it will always succeed.)

Exercise:
What changes would you make if you wanted
to wait at most 5 seconds to acquire

the lock?
(Hint.)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/02/02/10123392.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

