
1/2

August 22, 2014

Why does the OpenThread function behave differently
when the target thread belongs to another process?

devblogs.microsoft.com/oldnewthing/20140822-00

Raymond Chen

A customer discovered strange behavior in the OpenThread function and wondered

whether it was expected.

We use the OpenThread function to obtain a thread handle with THREAD_QUERY_LIMIT‐
ED_INFORMATION , passing in a valid thread ID. We later pass this handle to GetExitCode‐
Thread to get the thread exit code. We have found that the function succeeds if the thread in
question belongs to another process, provided the thread is still running (has not yet exited). On
the other hand, if the thread belongs to our own process, then the call always succeeds
regardless of whether the thread is running or not. Is this expected behavior? And can we
assume that if OpenThread fails with ERROR_INVALID_PARAMETER , then it means that the
target thread has already exited?

The OpenThread function fails if you pass it an invalid thread ID. Thread IDs go invalid

when the corresponding thread object is destroyed, and thread objects are destroyed when

the thread exits and there are no open handles to the thread. Once a thread object is

destroyed, its thread ID becomes invalid and may be re-used by a future thread.
Whether the

thread belongs to the same process or a different process does not play a rôle in this

determination.
My guess is that the reason the call succeeds if the target thread belongs to

the same process, even if the target thread has already exited, is something much more

mundane: They have a thread handle leak in their application.
The customer never wrote

back after receiving this explanation, so we’ll never know whether my guess was correct.

Bonus chatter: If you aren’t sure whether you are passing a valid thread ID to Open‐

Thread , then you most likely already have a bug. Since thread IDs can be reused, if you

haven’t taken other steps to ensure that the thread you want still exists, then it’s possible that

the thread you want has already exited, the corresponding thread object has been destroyed,

and the thread ID has been reused by some other thread. Your OpenThread call will now

succeed, but it will refer to some totally unrelated thread. Your program will most likely get

very confused at this point.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/20140822-00/?p=173
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

Follow

