
1/2

August 21, 2014

Some reasons not to do anything scary in your DllMain,
part 3

devblogs.microsoft.com/oldnewthing/20140821-00

Raymond Chen

In the same week, the shell team was asked to investigate two failures.
The first one was a

deadlock in Explorer. The participating threads look like this:

Thread 1 called FreeLibrary on a shell extension as part of normal CoFreeUnused‐

Libraries processing. That DLL called OleUninitialize from its DllMain

function. This thread blocked because the COM lock was held by thread 2.

Thread 2 called CoCreateInstance , and COM tried to load the DLL which handles

the object, but the thread blocked because the loader lock was held by thread 1.

The shell extension caused this problem because it ignored the rule against calling shell and

COM functions from the DllMain entry point, as specifically called out in the DllMain

documentation as examples of functions that should not be called.
The authors of this shell

extension may never have caught this problem in their internal testing (or if they did they

didn’t understand what it meant) because hitting this deadlock requires that a race window

be hit: The shell extension DLL needs to be unloaded on one thread at the exact same

moment another thread is inside the COM global lock trying to load another DLL.

Meanwhile, another failure was traced back to a DLL calling CoInitialize from their

DllMain . This extra COM initialization count means that when the thread called Co‐

Uninitialize thinking that it was uninitializing COM, it actually merely decremented the

count to 1. The code then proceeded to do things that are not allowed in a single-threaded

apartment, believing that it had already torn down the apartment. But the secret Co‐

Initialize performed by the shell extension violated that assumption. Result: A thread

that stopped responding to messages.
The authors of both of these shell extensions seemed

be calling CoUninitialize / OleUninitialize in order to cancel out a Co‐

Initialize / OleInitialize which they performed in their DLL_PROCESS_ATTACH . This

is fundamentally unsound not only because of the general rule of not calling COM functions

inside DllMain but also because OLE initialization is a per-thread state, whereas the thread

that gets the DLL_PROCESS_DETACH notification is not necessarily the one that receives the

DLL_PROCESS_ATTACH notification. It so happens that in the second case, the DLL in question

was a shell copy hook, and the hang was occuring not in Explorer but in an application which

https://devblogs.microsoft.com/oldnewthing/20140821-00/?p=183
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/26/9804500.aspx

2/2

was using SHFileOperation to delete some files. We could at least advise the application

authors to pass the FOFX_NOCOPYHOOKS flag to IFileOperation::SetOperationFlags to

prevent copy hooks from being loaded.

Previous articles in this series: Part 1, Part 2.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/01/27/63401.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/28/63880.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

