
1/3

August 15, 2014

The scope of the C# checked/unchecked keyword is
static, not dynamic

devblogs.microsoft.com/oldnewthing/20140815-00

Raymond Chen

C# has operators checked and unchecked
to control the behavior of the language in the

face of integer overflow.
There are also checked and unchecked statements
which apply

the behavior to blocks of statements rather than single
expressions.

int x;

x = checked(a + b); // evaluate with overflow checking

y = unchecked(a + b); // evaluate without overflow checking

checked {

x = a + b; // evaluate with overflow checking

}

unchecked {

x = a + b; // evaluate without overflow checking

}

Why, then, doesn’t this code below raise an overflow exception?

class Program {

static int Multiply(int a, int b) { return a * b; }

static int Overflow() { return Multiply(int.MaxValue, 2); }

public static void Main() {

 System.Console.WriteLine(checked(Overflow()));

 checked {

 System.Console.WriteLine(Overflow());

 }

}
}

(Mini-exercise: Why couldn’t I have just written
 static int Overflow() { return

int.MaxValue * 2; } ?)

The answer is that the scope of the checked or
 unchecked keyword is static, not dynamic.

Whether a particular arithmetic is checked or unchecked is
determined at compile time, not

at run time.
Since the multiplication in the Multiply function
is not explicitly marked

checked or unchecked,
uses the overflow context implied by your compiler options.
Assuming

https://devblogs.microsoft.com/oldnewthing/20140815-00/?p=233

2/3

you’ve left it at the default of
 unchecked ,
this means that
there is no overflow checking in

the Multiply function,
even if you call it from a checked context.
Because once you call the

Multiply function,
you have left the checked context.

The C# language specification addresses this issue not once,
not twice, but three times!
(But

it seems that some people miss it,
possibly because there is
too much documentation.)

First, there is an
explicit list of
operations which
are controlled by the checked or

unchecked
keyword:

The predefined ++ and -- unary operators,
when the operand is of an integral type.
The predefined - unary operator,
when the operand is of an integral type.
The predefined + , - ,
 * , and / binary operators,
when both operands are of
integral types.
Explicit numeric conversions from one integral type to another
integral type, or from
float or double
to an integral type.

That’s all.
Note that function calls are not on the list.

Now, that may have been a bit too subtle (documentation by omission),
so the language

specific goes ahead and calls it out.

The checked and unchecked operators
only affect the overflow checking context for
those operations
that are textually contained within the “ (”
and “) ” tokens.
The operators
have no effect on function members
that are invoked as a result of evaluating the contained
expression.

And then, in case you still didn’t get it, the language specification
even includes an example:

class Test

{

 static int Multiply(int x, int y) {

 return x * y;

 }

 static int F() {

 return checked(Multiply(1000000, 1000000));

 }

}

The use of checked in F does not
affect the evaluation of x * y in
 Multiply ,
so x
* y is evaluated in the default overflow
checking context.

(I wrote my example before consulting the language specification.
That we both chose to use

multiplication overflow is just a coincidence.)

http://blogs.msdn.com/b/oldnewthing/archive/2013/04/10/10409822.aspx
http://msdn.microsoft.com/en-us/library/aa691349(v=VS.71).aspx

3/3

Even though the language specification
says it three times,
in three different ways,
there are

still people who are under the mistaken impression that
the scope of the checked keyword

is dynamic.

Another thing you may have notice is that the checked
and unchecked keywords apply

only to the built-in
arithmetic operations on integers.
They do not apply to overloaded

operators or to operators on custom
classes.

Which makes sense if you think about it,
because in order to define an overloaded operator or

an operator
on a custom class,
you need to write the implementation as a separate function,

in which case you have already left the scope of the
 checked and unchecked keywords.

And now we are leaving the scope of CLR Week.
You can remove your hands from your ears

now.

Raymond Chen

Follow

http://www.theotherpages.org/poems/carrol03.html
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

