
1/2

August 8, 2014

The case of the orphaned LpdrLoaderLock critical
section

devblogs.microsoft.com/oldnewthing/20140808-00

Raymond Chen

A customer found that under heavy load,
their application would occasionally hang.

Debugging the hang shows that everybody was waiting for the
 LpdrLoaderLock critical

section.
The catch was that the critical section was reported as locked,
but the owner thread

did not exist.

0:000> !critsec ntdll!LdrpLoaderLock

CritSec ntdll!LdrpLoaderLock+0 at 7758c0a0

WaiterWoken No

LockCount 4

RecursionCount 2

OwningThread 150c

EntryCount 0

ContentionCount 4

*** Locked

0:000> ~~[150c]k

 ^ Illegal thread error in '~~[150c]k'

How can a critical section be owned by thread that no longer exists?

There are two ways this can happen.
One is that there is a bug in the code that manages the

critical
section such that there is some code path that takes the critical
section but forgets to

release it.
This is unlikely to be the case for the loader lock
(since a lot of really smart people

are in charge of the loader lock),
but it’s a theoretical possibility.
We’ll keep that one in our

pocket.

Another possibility is that the code to exit the critical section
never got a chance to run.
For

example, somebody may have thrown an exception
across the stack frames which manage the

critical section,
or somebody may have tried to exit the thread from inside the
critical section,

or (gasp) somebody may have called
 TerminateThread to nuke the thread from orbit.

I suggested that the
 TerminateThread theory was a good one to start with,
because even if

it wasn’t the case,
the investigation should go quickly because
the light is better.
You’re not so

much interested in finding it as you are in ruling it out
quickly.¹

https://devblogs.microsoft.com/oldnewthing/20140808-00/?p=293
http://blogs.msdn.com/b/oldnewthing/archive/2012/09/10/10347674.aspx
http://c2.com/cgi/wiki?WhereTheLightIsBetter

2/2

The customer replied,
“We had one call to TerminateThread in our application,
and we

removed it,
but the problem still occurs.
Is it worth also checking the source code of the DLLs

our application
links to?”

Okay, the fact that they found one at all means that
there’s a good chance others are lurking.

Before we could say, “Yes, please continue your search,”
the customer followed up.
“We

found a call to
 TerminateThread in a component provided by
another company.
The code

created a worker thread, and decided to clean up the
worker thread by terminating it.
We

commented out the call just as a test,
and it seems to fix the problem.
So at least now we

know where the problem is and we can try to fix
it properly.”

¹ In the medical profession, there’s the term
ROMI, which stands for rule out myocardial

infarction.
It says that if a patient comes to you with anything that could
possibly remotely be

the symptom of a heart attack,
like numbness in the arm or chest pain,
you should perform a

test to make sure.
Even though the test is probably going to come back negative,
you have to

check just to be safe.
Here, we’re ruling out TerminateThread ,
which I guess could go by

the dorky acronym ROTT.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

