
1/2

August 1, 2014

Before claiming that a function doesn't work, you should
check what you're passing to it and what it returns

devblogs.microsoft.com/oldnewthing/20140801-00

Raymond Chen

Before claiming that a function doesn’t work,
you should check what you’re passing to it and

what it returns,
because it may be that the function is behaving just fine
and the problem is

elsewhere.

The GetCurrentDirectoryW function does
not appear to support directories with Unicode
characters in their
names.

wchar_t currentDirectory[MAX_PATH];

GetCurrentDirectoryW(MAX_PATH, currentDirectory);

wcout << currentDirectory << endl;

The correct directory name is obtained if it contains only ASCII
characters in its name,
but it
truncates the string at the first non-ASCII character.

If you step through the code in the debugger,
you’ll see that the
 GetCurrentDirectoryW

function is
working just fine.
The buffer is filled with the current directory,
including the

non-ASCII characters.
The problem is that the wcout stream stops printing
the directory

name at the first
non-ASCII characters.
And that’s because the default locale for wcout
is

the "C" locale, and the
 "C" locale is
"the minimal environment for C translation."
The

"C" locale is
useless for actual work involving, you know, locales.
You will have to do some

language-specific munging to get
the characters to reach the screen in the format you want,

the details of which are not the point of today's topic.

In other words, the bug was not in the
 GetCurrentDirectoryW function.
It was in what you

did with the result of the
 GetCurrentDirectoryW function.

Here's another example of thinking the problem is in a
function when it isn't:

https://devblogs.microsoft.com/oldnewthing/20140801-00/?p=353

2/2

The SetWindowTextW function does not appear
to support Unicode, despite its name.

wstring line;

wifstream file("test"); // this file is in Unicode

getline(file, line);

SetWindowTextW(hwnd, line.c_str());

If you look at the line variable before you
even get around to calling
 SetWindowTextW ,

you'll see that it does not contain the text from your Unicode file.
The problem is that the

default wifstream reads
the text as an 8-bit file, and then internally converts it
(according

to the lame "C" locale) to Unicode.
If the original file is already Unicode, you're doing a

double
conversion and things don't go well.
You then pass this incorrectly-converted string to

SetWindowTextW ,
which naturally displays something different from what you intended.

Again, the point is not to delve into the intricacies of
 wifstream .
The point is that the

problem occurred even before you called
 SetWindowTextW .
The observed behavior, then, is

simple a case of
Garbage In, Garbage Out.

Here's another example from a few years ago.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2010/05/20/10013612.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

