
1/5

June 13, 2014

Non-classical processor behavior: How doing something
can be faster than not doing it

devblogs.microsoft.com/oldnewthing/20140613-00

Raymond Chen

Consider the following program:

#include <windows.h>

#include <stdlib.h>

#include <stdlib.h>

#include <stdio.h>

int array[10000];

int countthem(int boundary)

{

int count = 0;

for (int i = 0; i < 10000; i++) {

 if (array[i] < boundary) count++;

}
return count;

}

int __cdecl wmain(int, wchar_t **)

{

for (int i = 0; i < 10000; i++) array[i] = rand() % 10;

for (int boundary = 0; boundary <= 10; boundary++) {

 LARGE_INTEGER liStart, liEnd;

 QueryPerformanceCounter(&liStart);

 int count = 0;

 for (int iterations = 0; iterations < 100; iterations++) {

 count += countthem(boundary);

 }

 QueryPerformanceCounter(&liEnd);

 printf("count=%7d, time = %I64d\n",

 count, liEnd.QuadPart - liStart.QuadPart);

}
return 0;

}

The program generates a lot of random integers in the range 0..9
and then counts how many

are less than 0, less than 1, less than 2,
and so on.
It also prints how long the operation took

in QPC units.
We don’t really care how big a QPC unit is; we’re just interested
in the relative

https://devblogs.microsoft.com/oldnewthing/20140613-00/?p=743
http://blogs.msdn.com/b/oldnewthing/archive/2014/01/06/10487119.aspx#10487874

2/5

values.
(We print the number of items found merely to verify that the result
is close to the

expected value of boundary * 100000 .)

Here are the results:

boundary count time

0 0 1869

1 100000 5482

2 200800 8152

3 300200 10180

4 403100 11982

5 497400 12092

6 602900 11029

7 700700 9235

8 797500 7051

9 902500 4537

10 1000000 1864

To the untrained eye, this chart is strange.
Here’s the naïve analysis:

When the boundary is zero, there is no incrementing at all,
so the entire running time is just

loop overhead.
You can think of this as our control group.
We can subtract 1869 from the

running time of every column
to remove the loop overhead costs.
What remains is the cost of

running count
increment instructions.

The cost of a single increment operation is highly variable.
At low boundary values, it is

around 0.03 time units per increment.
But at high boundary values, the cost drops to one

tenth that.

What’s even weirder is that once the count crosses 600,000,
each addition of another

100,000 increment operations makes the code
run faster,
with the extreme case when
the

boundary value reaches 10,
where we run
faster than if we hadn’t done any incrementing at

all!

How can the running time of an increment instruction be negative?

3/5

The explanation for all this is that CPUs are more complicated
than the naïve analysis

realizes.
We saw earlier that
modern CPUs contain all sorts of hidden variables.
Today’s

hidden variable is the branch predictor.

Executing a single CPU instruction takes multiple steps,
and modern CPUs kick off multiple

instructions in parallel,
with each instruction at a different stage of execution,
a technique

known as
pipelining.

Conditional branch instructions are bad for pipelining.
Think about it:
When a conditional

branch instruction enters the pipeline,
the CPU doesn’t know whether the condition will be

true
when the instruction reaches the end of the pipeline.
Therefore, it doesn’t know what

instruction to feed into
the pipeline next.

Now, it could just sit there and let the pipeline sit idle
until the branch/no-branch decision is

made,
at which point it now knows which instruction to feed into
the pipeline next.
But that

wastes a lot of pipeline capacity,
because it will take time for those new instructions to
make

it all the way through the pipeline and start
doing productive work.

To avoid wasting time, the processor has an internal
branch predictor which remembers the

recent
history of which conditional branches were taken and which
were not taken.
The

fanciness of the branch predictor varies.
Some processors merely assume that a branch will

go the same
way that it did the last time it was countered.
Others keep complicated branch

history and try to infer
patterns (such as “the branch is taken every other time”).

When a conditional branch is encountered,
the branch predictor tells the processor which

instructions
to feed into the pipeline.
If the branch prediction turns out to be correct,
then we

win!
Execution continues without a pipeline stall.

But if the branch prediction turns out to be incorrect,
then we lose!
All of the instructions

that were fed into the pipeline
need to be recalled and their effects undone,
and the processor

has to go find the correct instructions
and start feeding them into the pipeline.

Let’s look at our little program again.
When the boundary is 0,
the result of the comparison is

always false.
Similarly, when the boundary is 10, the result is always true.
In those cases, the

branch predictor can reach 100% accuracy.

The worst case is when the boundary is 5.
In that case, half of the time the comparison is true

and half of the time the comparison is false.
And since we have random data,
fancy historical

analysis
doesn’t help any.
The predictor is going to be wrong half the time.

Here’s a tweak to the program:
Change the line

 if (array[i] < boundary) count++;

to

http://blogs.msdn.com/b/oldnewthing/archive/2004/12/16/317157.aspx
http://en.wikipedia.org/wiki/Pipeline_(computing)
http://www.amazon.com/gp/search?index=books&keywords=winning+the+lottery&tag=tholneth-20

4/5

 count += (array[i] < boundary) ? 1 : 0;

This time, the results look like this:

boundary count time

0 0 2932

1 100000 2931
 </span

2 200800 2941
 </span

3 300200 2931
 </span

4 403100 2932
 </span

5 497400 2932
 </span

6 602900 2932
 </span

7 700700 2999
 </span

8 797500 2931
 </span

9 902500 2932
 </span

10 1000000 2931
 </span

The execution time is now independent of the boundary value.
That’s because the optimizer

was able to remove the branch from
the ternary expression:

; on entry to the loop, ebx = boundary

 mov edx, offset array ; start at the beginning of the array

$LL3:

 xor ecx, ecx ; start with zero

 cmp [edx], ebx ; compare array[i] with boundary

 setl cl ; if less than boundary, then set al = 1

 add eax, ecx ; accumulate result in eax

 add edx, 4 ; loop until end of array

 cmp edx, offset array + 40000

 jl $LL3

Since there are no branching decisions in the inner loop
aside from the loop counter,
there is

no need for a branch predictor to decide which way
the comparison goes.
The same code

executes either way.

Exercise:
Why are the counts exactly the same for both runs,
even though the dataset is

random?

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

Follow

