
1/4

June 9, 2014

Improving the performance of CF_HDROP by providing
file attribute information

devblogs.microsoft.com/oldnewthing/20140609-00

Raymond Chen

The CF_HDROP clipboard format is still quite popular,
despite its limitation of being limited

to files.
You can’t use it to represent
virtual content,
for example.

For all of you still using
 CF_HDROP ,
you can improve the performance of drag/drop

operations by
adding a little more information to your data object.

Observe that the
 CF_HDROP
clipboard format is just a list of paths.
Some drop targets care

about whether the paths refer to directories
or to files,
and since CF_HDROP does not provide

this information,
the drop targets are forced to access the disk to get the answer.
(This can be

expensive for network locations.)

To help this case, you can add a
 CFSTR_FILE_ATTRIBUTES_ARRAY to your
data object.
This

contains the file attribute information for the items in your
 CF_HDROP ,
thereby saving the

drop target the cost of having to go find them.

Take our
tiny drag-drop sample
and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20140609-00/?p=783
http://blogs.msdn.com/b/oldnewthing/archive/2008/03/18/8080183.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2008/03/11/8080077.aspx

2/4

class CTinyDataObject : public IDataObject

{

 ...

 enum {

 // DATA_TEXT,

 DATA_HDROP,

 DATA_NUM,

 DATA_INVALID = -1,

 };

 ...

};
CTinyDataObject::CTinyDataObject() : m_cRef(1)

{

 SetFORMATETC(&m_rgfe[DATA_HDROP], CF_HDROP);

}

struct STATICDROPFILES

{

DROPFILES df;

TCHAR szFile[ARRAYSIZE(TEXT("C:\\Something.txt\0"))];

} const c_hdrop = {

 {

 FIELD_OFFSET(STATICDROPFILES, szFile),

 { 0, 0 },

 FALSE,

 sizeof(TCHAR) == sizeof(WCHAR), // fUnicode

 },

 TEXT("C:\\Something.txt\0"),

};
HRESULT CTinyDataObject::GetData(FORMATETC *pfe, STGMEDIUM *pmed)

{

 ZeroMemory(pmed, sizeof(*pmed));

 switch (GetDataIndex(pfe)) {

 case DATA_HDROP:

 pmed->tymed = TYMED_HGLOBAL;

 return CreateHGlobalFromBlob(&&c_hdrop, sizeof(c_hdrop),

 GMEM_MOVEABLE, &pmed->hGlobal);

 }

 return DV_E_FORMATETC;

}

Okay, let’s look at what we did here.

First, we make our data object report a
 CF_HDROP .
We then declare a static DROPFILES

structure
which we use for all of our drag-drop operations.
(Of course, in real life, you would

generate it dynamically,
but this is just a Little Program.)

That’s our basic program that drags a file.

Note that

you are much better off letting the shell create the data object,

3/4

since that data object will contain much richer information
(and this entire article would not

be needed).
Here’s a sample program which
uses the GetUIObjectOfFile function
to do this

in just a few lines.
It’s much shorter than having to cook up this
 CTinyDataObject class.

I’m doing it this way on the assumption that your program
is deeply invested in the less

flexible CF_HDROP
format,
so changing from CF_HDROP to some other format
would be

impractical.

Okay, so that’s the program we’re starting from.
Let’s add support for precomputed

attributes.

class CTinyDataObject : public IDataObject

{

 ...

 enum {

 DATA_HDROP,

 DATA_ATTRIBUTES,

 DATA_NUM,

 DATA_INVALID = -1,

 };

 ...

};
CTinyDataObject::CTinyDataObject() : m_cRef(1)

{

 SetFORMATETC(&m_rgfe[DATA_HDROP], CF_HDROP);

 SetFORMATETC(&m_rgfe[DATA_ATTRIBUTES],

 RegisterClipboardFormat(CFSTR_FILE_ATTRIBUTES_ARRAY));

}

FILE_ATTRIBUTES_ARRAY c_attr = {

1, // cItems

FILE_ATTRIBUTE_ARCHIVE, // OR of attributes

FILE_ATTRIBUTE_ARCHIVE, // AND of attributes

{ FILE_ATTRIBUTE_ARCHIVE }, // the file attributes

};
HRESULT CTinyDataObject::GetData(FORMATETC *pfe, STGMEDIUM *pmed)

{

 ZeroMemory(pmed, sizeof(*pmed));

 switch (GetDataIndex(pfe)) {

 case DATA_HDROP:

 pmed->tymed = TYMED_HGLOBAL;

 return CreateHGlobalFromBlob(&c_hdrop, sizeof(c_hdrop),

 GMEM_MOVEABLE, &pmed->hGlobal);

 case DATA_ATTRIBUTES:

 pmed->tymed = TYMED_HGLOBAL;

 return CreateHGlobalFromBlob(&c_attr1, sizeof(c_attr1),

 GMEM_MOVEABLE, &pmed->hGlobal);

 }

 return DV_E_FORMATETC;

}

Okay, let’s look at what we did here.

http://blogs.msdn.com/b/oldnewthing/archive/2004/12/06/275659.aspx

4/4

We added a new data format,
 CFSTR_FILE_ATTRIBUTES_ARRAY ,
and we created a static

copy of the
 FILE_ATTRIBUTES_ARRAY
variable-length structure that contains the attributes

of our
one file.
Of course, in a real program, you would generate the structure
dynamically.

Note that I use a sneaky trick here:
Since the
 FILE_ATTRIBUTES_ARRAY
ends with an array

of length 1,
and I happen to need exactly one item,
I can just declare the structure as-is and

fill in the one slot.
(If I had more than one item, then I would have needed more typing.)

To make things easier for the consumers of the
 FILE_ATTRIBUTES_ARRAY ,
the structure

also asks you to report the logical OR and logical AND
of all the file attributes.
This is to allow

quick answers to questions like
“Is everything in this CF_DROP a file?”
or
“Is anything in this

CF_DROP write-protected?”
Since we have only one file, the calculation of these OR and

AND
values is nearly trivial.

Okay, so there isn’t much benefit to adding file attributes
to a drag of a single file from the

local hard drive,
since the local hard drive is pretty fast,
and the file attributes may very well

be cached.
But if you’ve placed thousands of files from a network drive
onto the clipboard,

this shortcut can save a lot of time.
(That was in fact the customer problem that inspired this

Little Program.)

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/08/26/220873.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

