
1/4

May 22, 2014

Why does my radio button group selection get reset each
time my window regains activation?

devblogs.microsoft.com/oldnewthing/20140522-00

Raymond Chen

A customer reported (all incomplete information and red herrings preserved):

We have an issue related to two radio buttons in a window.
The code programmatically checks
the second button
by sending the BM_SETCHECK message.
We observe that if the user clicks
somewhere else on the screen
(so that our application loses focus),
and then clicks on the
taskbar icon to return to our application,
the first radio button spontaneously gets selected.

We watched all the messages in Spy++, and it appears
that the radio button is receiving a
WM_SETFOCUS
followed by a
 WM_SETCHECK .

Is this by design?
If not, what should I be looking for in my code that
is causing this erroneous
selection change to occur?

The incomplete information is that the customer
didn’t say how they created those radio

buttons.

The red herring is that the customer said that
they had a problem with their window.
This

suggested that they were doing a custom window
implementation (because if they were using

the standard
dialog implementation, they would have said dialog).

But from the symptoms,
it’s clear that what’s most likely happening is that
the radio button is

created as a
 BS_AUTORADIOBUTTON .
And automatic radio buttons select themselves

automatically (hence the name) when they receive
focus.

That explains the message sequence
of
 WM_SETFOCUS
followed by a
 WM_SETCHECK :
The

automatic radio button receives focus,
and in response it checks itself.

Therefore, the next level of investigation
is why the first radio button is getting focus
when

the window is activated.

https://devblogs.microsoft.com/oldnewthing/20140522-00/?p=933

2/4

If the application window is a custom window,
then the place to look is their window’s

activation and focus code, to see why focus is
going to the first radio button instead of the

second one.
Perhaps it is putting focus on the first radio
button temporarily, and then later

realizes,
“Oh wait, I really meant to put it on the second
radio button.”
The fix would be to get

rid of the temporary
focus change and go straight to the second
radio button.

If the application window is a standard dialog,
then we saw last time that
the dialog manager

restores focus to the window
that had focus last,
and that you could mimic the same behavior

in your
own code.

It turns out that the customer was indeed using
a standard dialog,
in which case the problem

is that they put the
dialog into an inconsistent state:
They checked the second radio button

but
left focus on the first radio button.
This is a configuration that exists nowhere in nature,

and therefore when the dialog manager tries to
recreate it (given its lack of specialized

knowledge
about specific controls), it can’t.

The fix is to put focus on the second radio button
as well as setting the check box.
In fact, you

can accomplish both by setting the focus
to the second radio button
(noting that
there is a

special process for setting focus in a dialog box)
since you already are using automatic radio

buttons.

Here’s a program that demonstrates the problem:

http://blogs.msdn.com/b/oldnewthing/archive/2014/05/21/10527168.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/08/02/205624.aspx

3/4

// scratch.rc

1 DIALOGEX 32, 32, 160, 38

STYLE DS_MODALFRAME | DS_SHELLFONT | WS_POPUP | WS_VISIBLE |

 WS_CAPTION | WS_SYSMENU

CAPTION "Test"

FONT 9, "MS Shell Dlg"

BEGIN

CONTROL "First", 100, "Button",

 WS_GROUP | WS_TABSTOP | BS_AUTORADIOBUTTON, 4, 4, 152, 13

CONTROL "Second", 101, "Button",BS_AUTORADIOBUTTON, 4, 20, 152, 13

END

// scratch.cpp

#include <windows.h>

#include <windowsx.h>

INT_PTR CALLBACK DlgProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

case WM_INITDIALOG:

 SetFocus(GetDlgItem(hdlg, 100));

 CheckRadioButton(hdlg, 100, 101, 101);

 return FALSE;

case WM_COMMAND:

 switch (GET_WM_COMMAND_ID(wParam, lParam)) {

 case 100:

 case 101:

 CheckRadioButton(hdlg, 100, 101,

 GET_WM_COMMAND_ID(wParam, lParam));

 break;

 case IDCANCEL: EndDialog(hdlg, 0); break;

 }

}
return FALSE;

}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

DialogBox(hinst, MAKEINTRESOURCE(1), nullptr, DlgProc);

return 0;

}

Observe that we set focus to the first button
but check the second button.
When the dialog

regains focus, the second button will
fire a
 WM_COMMAND because it thinks it was
clicked on,

and in response the dialog box moves the selection to
the second button.

The fix here is actually pretty simple:
Let the dialog manager handle the initial focus.
Just

delete the SetFocus call
and return TRUE ,
which means,
“Hey, dialog manager, you do the

focus thing,
don’t worry about me.”

4/4

Another fix is to remove the code that updates the radio
buttons in response to the

WM_COMMAND message.
(I.e., get rid of the entire case 100 and
 case 101 handlers.)

Again, just let the dialog manager do the usual thing,
and everything will work out just fine.

It’s great when you can fix a bug by deleting code.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

