
1/2

May 15, 2014

Is WriteProcessMemory atomic?
devblogs.microsoft.com/oldnewthing/20140515-00

Raymond Chen

A customer asked,
“Does
 WriteProcessMemory
write the memory atomically?
I mean, if I

use
 WriteProcessMemory
to write 10 instructions for a total of 20 bytes,
can
 Write‐

ProcessMemory
write those 20 bytes atomically?”

CPUs typically provide only modest atomic update capabilities.
The x86 family of processors,

for example, can update up to eight bytes
atomically.
Twenty bytes is beyond the capability of

the processor.

I was kind of baffled at what sort of mental model of computing the
customer had developed.

It apparently permits
 WriteProcessMemory
to accomplish something that the CPU is not

physically capable of
performing.

“Will my aluminum hammer withstand temperatures above 700C?”

Given that aluminum melts at 660C,
it doesn’t matter whether you make a hammer or a

ladder or a scaffold.
As long as you make it out of aluminum, it will melt at 660C
because

that’s a fundamental property of aluminum.

The only thing I can think of is that the
customer thought that maybe the kernel suspended

all of the
threads in the process,
updated the memory,
and then unfroze them all.
It wouldn’t

be an atomic update in an absolute sense
(somebody else doing a
 ReadProcessMemory

might read an in-progress
write),
but it would be atomic from the viewpoint of the process

being written to.

But no, the
 WriteProcessMemory
function does no such thing.
It merely writes the memory

into the process address space.

Another way of thinking about it is
using the thought experiment
“Imagine if this were true.”

If it were true that
 WriteProcessMemory
provided atomicity guarantees for 20 bytes,
then

all sorts of multi-threaded synchronization problems
would magically disappear.
If you

wanted to update a block of memory in your process atomically,
you would just call
 Write‐

ProcessMemory
on your own process handle!

https://devblogs.microsoft.com/oldnewthing/20140515-00/?p=983

2/2

I noted that the underlying scenario sounds really fishy.
Using WriteProcessMemory to

update
code in a process sounds an awful lot like the customer
is writing a virus.
One of my

colleagues who studies malware agreed,
adding,
“On the other hand, some anti-malware

products also use
that approach, as dubious as it is.
For the record, I would like to add,

‘yuck’.”
My colleague asked the customer for further details
on what they are doing, and why

they think that
 WriteProcessMemory is what they need,
so that a proper solution to their

underlying problem could be developed.

We never heard back from the customer.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

