
1/4

May 14, 2014

The mystery of the icon that never appears
devblogs.microsoft.com/oldnewthing/20140514-00

Raymond Chen

A customer reported a problem showing an icon on their dialog box.

We verified that this code does execute during
the handling of the WM_INITDIALOG message.
No assertion fires, yet no icon appears either.

SHFILEINFO sfi = { 0 };

DWORD_PTR dwResult = SHGetFileInfo(m_pszFile, &sfi,

 sizeof(sfi), SHGFI_ICON);

assert(dwResult != 0);

m_hico = sfi.hIcon;

assert(m_hico != nullptr);

assert(GetDlgItem(hdlg, IDI_CUSTOMICON) != nullptr);

SendDlgItemMessage(hdlg, IDI_CUSTOMICON,

 WM_SETICON, ICON_BIG, (LPARAM)m_hico);

assert(SendDlgItemMessage(hdlg, IDI_CUSTOMICON,

 WM_GETICON, ICON_BIG, 0) == (LPARAM)m_hico);

Our dialog template says

 ICON "", IDI_CUSTOMICON, 10, 10, 0, 0

The customer did some helpful preliminary troubleshooting:

Verify that the code does indeed execute.
It sounds obvious, but some people forget to

check this.
They get distracted trying to figure out why a function isn’t
working, when in

fact the root cause is that
you forgot to call the function in the first place.

Verify that the SHGetFileInfo
call succeeded.
That rules out the case that the static

control is
displaying nothing because you didn’t give it anything to display.

Verify via GetDlgItem
that the control you’re trying to talk to really does exist.
That

rules out the case that you are talking to an empty room.
(For example, maybe you

added the control to the wrong template.)

Verify via WM_GETICON that the attempt
to change the icon really worked.

The problem is that the customer is using the wrong icon-setting message.

https://devblogs.microsoft.com/oldnewthing/20140514-00/?p=993

2/4

The WM_SETICON message
lets you customize the icon that is
displayed in the window’s

caption bar.
For this to have any effect, your window naturally needs to have the

WS_CAPTION style.
If you don’t have a caption, then telling the window manager,
“Please

display this icon in my caption” is mostly a waste of time.
It’s like signing up for a lawn-

mowing service when you don’t have
a lawn.

The message to change the icon displayed
inside a static control is
 STM_SETICON .

SendDlgItemMessage(hdlg, IDI_CUSTOMICON,

 STM_SETICON, (LPARAM)m_hico, 0);

Red herring:
Some of you may have noticed that the customer set their
control size to 0×0.

“You aren’t seeing an icon because you set the control to zero size!”
But since this control was

not created with
 SS_REALSIZECONTROL or
 SS_CENTERIMAGE ,
the control will resize itself

to match the size of the icon.

Here’s a sample program to show both types of icons set on the same
window, so you can see

the difference.

3/4

#include <windows.h>

#include <commctrl.h>

LRESULT CALLBACK SubclassProc(HWND hwnd, UINT uMsg, WPARAM wParam,

 LPARAM lParam, UINT_PTR uIdSubclass, DWORD_PTR dwRefData)

{

switch (uMsg) {

case WM_NCDESTROY:

 RemoveWindowSubclass(hwnd, SubclassProc, 0);

 PostQuitMessage(0);

 break;

}
return DefSubclassProc(hwnd, uMsg, wParam, lParam);

}

int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 PSTR lpCmdLine, int nShowCmd)

{

HWND hwnd = CreateWindow("static", nullptr,

 WS_OVERLAPPEDWINDOW | WS_VISIBLE |

 SS_ICON | SS_CENTERIMAGE,

 CW_USEDEFAULT, CW_USEDEFAULT,

 CW_USEDEFAULT, CW_USEDEFAULT,

 nullptr, nullptr, hinst, nullptr);

SetWindowSubclass(hwnd, SubclassProc, 0, 0);

HICON hicoCaption = LoadIcon(nullptr, IDI_EXCLAMATION)

SendMessage(hwnd, WM_SETICON, ICON_BIG,

 reinterpret_cast<LPARAM>(hicoCaption));

HICON hicoClient = LoadIcon(nullptr, IDI_QUESTION);

SendMessage(hwnd, STM_SETICON,

 reinterpret_cast<LPARAM>(hicoClient), 0);

MSG msg;

while (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

}
DestroyIcon(hicoClient);

DestroyIcon(hicoCaption);

return 0;

}

We create a top-level static window, which is highly unusual,
since static controls are nearly

always children of some other window.
I’m doing this specifically to show the two different

icons.
You don’t want to do this in a real program.

The static control has the SS_ICON
style, because we want it to display an icon, and the

SS_CENTERIMAGE style,
because we just want it to center the icon in its client area
without

resizing.
(We will control the size.)

We subclass the window so that we can post a quit message to exit the program
when the

window is destroyed,
which the user can do by pressing Alt + F4 .
(Hey, this is just a demo

program.
Catching clicks on the × button is just extra code that will
distract from the purpose

4/4

of the demonstration.
Heck, this entire subclass thing is already distracting from the purpose

of the demonstration!)

We load up two icons, an exclamation point, which we set as our caption icon,
and a question

mark, which we put in our client area.
(We could have used the
 Static_SetIcon macro in

windowsx.h to send the
 STM_SETICON message,
but I did it manually just to make the

message explicit.)

Run the program, and there you can see the two different types of icons:
The exclamation

point goes in the caption, and the question mark
goes in the client area.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

