
1/2

April 14, 2014

The geeky thrill of discovering that two things are really
the same thing, just with different labels

devblogs.microsoft.com/oldnewthing/20140414-01

Raymond Chen

Today’s post about binomial coefficients
was intended to be a warm-up for Catalan numbers,

but it turns out Eric Lippert already covered them,
first in the context of binary trees,
then in

the context of arbitrary trees and forests,
and then again
in the context of matched

parentheses.
Another way of seeing the correspondence
between forests and matched

parentheses is simply to consider
each { as an XML open-tag and each } as
an XML end-

tag.

One thing to take away from the enumeration of objects controlled
by Catalan numbers is

that when you see multiplication in a recurrence
relation, that typically corresponds to a

nested loop.
(We saw this ourselves when we studied Stirling numbers of the second kind.)

The correspondence between binary trees and arbitrary forests
is done by simply renaming

variables:
 leftChild and rightChild
turn into
 firstChild and nextSibling .

Renaming variables also
reveals an interesting equivalence
between the two algorithms for

reversing a linked list.
One technique is to do link rewriting:

Node *Reverse(Node *head)

{

Node *prev = nullptr;

while (head) {

 // The node we are rewriting

 Node *current = head;

 // Advance to next node before

 // we overwrite the outbound pointer

 head = current->next;

 // Repoint to previous node

 current->next = prev;

 // Advance the trailing pointer

 prev = current;

}
return prev;

}

https://devblogs.microsoft.com/oldnewthing/20140414-01/?p=1253
http://blogs.msdn.com/b/ericlippert/archive/2010/04/19/every-binary-tree-there-is.aspx
http://blogs.msdn.com/b/ericlippert/archive/2010/04/22/every-tree-there-is.aspx
http://blogs.msdn.com/b/ericlippert/archive/2010/04/22/every-tree-there-is.aspx

2/2

Another technique is to pop nodes off one list while pushing
them onto another.

Node *Reverse(Node *head)

{

Node *result = nullptr;

while (head) {

 // Pop

 Node *current = head;

 head = current->next;

 // Push

 current->next = result;

 result = current;

}
return result;

}

But if you look more closely at the two versions,
you’ll see that they are not really two

algorithms.
They are the same algorithm, just with different
comments and variable names!

One of my colleagues used this as an interview question and guided
candidates through both

algorithms, only to discover
later that they were actually the same algorithm,
merely viewed

through different-colored glasses.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

