
1/2

March 20, 2014

Going for the facts: Who is displaying this message box?
devblogs.microsoft.com/oldnewthing/20140320-00

Raymond Chen

A customer wanted to know whether
 CreateProcess had a problem with Unicode.

A problem with it?
Quite the contrary.
 CreateProcess loves Unicode!
In fact, if you call the

ANSI version, it converts the
strings to Unicode and then finishes the work in Unicode.

Okay, here’s the customer’s problem.

We have a custom application written in managed code.
When we launch the process from
unmanaged code via
 CreateProcess ,
we sometimes get a bogus error message:

WARNING!
The specified path, file name, or both are too long.
The fully qualified file
name must be less than 260 characters,
and the directory name must be less than 248
characters.

The filename is well under the 260-character limit
and the directory name is well under the 248-
character limit.
We have isolated the problem to be related to whether we
put Unicode
characters in the command line arguments.
If the command line arguments are all ASCII,
then
no message appears.

In case it matters, here’s our code to launch the custom
application.

STARTUP_INFO si = { sizeof(si) };

PROCESS_INFORMATION pi;

if (CreateProcess(NULL, commandLine, 0, 0, FALSE,

 NORMAL_PRIORITY_CLASS, 0, 0,

 &si, &pi) ...

// (in our case, the call succeeds)

What do we have to do to get
 CreateProcess to accept
non-ASCII characters on the
command line
without display an error message?

(Note that Unicode is a superset of ASCII.
All ASCII characters are also Unicode characters.

The customer is making the common mistake of saying
Unicode when they mean Unicode-

not-ASCII.)

https://devblogs.microsoft.com/oldnewthing/20140320-00/?p=1453

2/2

Actually, that error message is not coming from
 CreateProcess .
It’s coming from the

custom application.

We have the source code for our custom application
and it does not display this message.
The
custom application actually
receives the command line just fine (be it Unicode or not),
but if
there is Unicode in the command line,
we get the message above.

The message box may not be coming from your code,
but it’s still coming from your

application.
Why not hook up a debugger when the message box is up,
then
take a stack trace

to see whose idea it was to display
the message box.

The customer connected a debugger and determined that
the message was coming from a

third-party library that their
custom application uses.
Now they know whom to talk to in

order to solve the problem.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2008/07/23/8765362.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

