
1/2

March 17, 2014

How do I show the contents of a directory while
respecting the user's preferences for hidden and super-
hidden files as well as the user's language preferences?

devblogs.microsoft.com/oldnewthing/20140317-00

Raymond Chen

A customer was writing a program in (and this is what they said)
“32 bit C++ .Net 4.0”
which

displayed the contents of
a directory,
and they wanted to filter out items such as hidden files

and protected operating system files
(also known as super-hidden files)
based on the user’s

current Explorer preferences.
Furthermore, they wanted to show localized folder names,
such

as Usarios instead of Users,
again, the same way Explorer does.
They are currently using

Directory.GetDirectories() .

The way to do this is to use
 IShellFolder::EnumObject ,
the same way Explorer does.

Don’t pass
 SHCONTF_INCLUDEHIDDEN
or
 SHCONTF_INCLUDESUPERHIDDEN ,
and you will get

the default enumeration that filters out
hidden items based on the user’s preferences.
(You

pass the flag to force the items to be included,
overriding the user’s preferences.)
and the

names of the items that come out of the enumeration
will be the localized names.
You can ask

for the parsing name to get the physical file name.

https://devblogs.microsoft.com/oldnewthing/20140317-00/?p=1493

2/2

#define UNICODE

#define _UNICODE

#define STRICT

#define STRICT_TYPED_ITEMIDS

#include <windows.h>

#include <shlobj.h>

#include <atlbase.h>

#include <atlalloc.h>

int __cdecl wmain(int argc, wchar_t **argv)

{

CCoInitialize init;

if (argc < 2) return 0;

CComHeapPtr<ITEMIDLIST_ABSOLUTE> sppidl;

CComPtr<IShellFolder> spsf;

CComPtr<IEnumIDList> speidl;

if (FAILED(SHParseDisplayName(argv[1], nullptr,

 &sppidl, 0, nullptr)) ||

 FAILED(SHBindToObject(nullptr, sppidl,

 nullptr, IID_PPV_ARGS(&spsf))) ||

 FAILED(spsf->EnumObjects(nullptr,

 SHCONTF_FOLDERS | SHCONTF_NONFOLDERS, &speidl)) ||

 speidl == nullptr) return 0;

for (CComHeapPtr<ITEMID_CHILD> sppidlItem;

 speidl->Next(1, &sppidlItem, nullptr) == S_OK;

 sppidlItem.Free()) {

 PrintDisplayName(spsf, sppidlItem, SHGDN_NORMAL, L"Display Name");

 PrintDisplayName(spsf, sppidlItem, SHGDN_FORPARSING, L"For Parsing");

 wprintf(L"\n");

}
}

The program takes a fully-qualified path on the command line
and displays its contents (both

in localized display name and
in raw file system paths) while respecting the user’s

preferences
for hidden and super-hidden files.

It appears that the customer is writing their program in C#,
despite their claim that they were

using C++
(or maybe they meant MC++ or C++/CLI).
In that case, they can use the

Windows 7 API CodePack for Microsoft® .NET Framework
(gotta love that
catchy name).

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2004/02/12/71851.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/24/10387757.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/05/20/135841.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/08/30/10202076.aspx
http://blogs.msdn.com/b/jonathanh/archive/2005/08/05/what-s-the-longest-microsoft-product-name.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

