
1/2

March 6, 2014

We're currently using FILE_FLAG_NO_BUFFERING and
FILE_FLAG_WRITE_THROUGH, but we would like our
WriteFile to go even faster

devblogs.microsoft.com/oldnewthing/20140306-00

Raymond Chen

A customer said that their program’s I/O pattern is to open a file and then every so often

write about 100KB of data into the file. They are currently using the

FILE_FLAG_NO_BUFFERING and FILE_FLAG_WRITE_THROUGH flags to open a file, and they

wanted to know what else they could do to make their writes go even faster.
Um, for one

thing, you stop passing those two flags!
Those two flags in combination basically mean “Give

me the slowest possible I/O performance!” because they force all I/O to go through to the

physical media right away.
Removing the FILE_FLAG_WRITE_THROUGH flag will be a big

help. This allows the hardware disk cache to do its normal job of completing the I/O

immediately and performing the physical I/O lazily (perhaps in an optimized order based on

subsequent writes). A 100KB write is a small enough write that your I/O time on rotational

media will be dominated by the seek time. It’ll take five to ten milliseconds to move the head

into position and only one millisecond to write out the data. You’re wasting 80% or more of

your time just preparing for the write.
Much better would be to issue the I/O without the

FILE_FLAG_WRITE_THROUGH flag so that the entire 100KB I/O request goes into the hard

drive on-board cache. (It will fit quite easily, since the on-board cache for today’s hard drives

will be 8 megabytes or larger.) Your WriteFile will complete immediately, and the commit

to physical storage will occur while your program is busy doing computation.
If the writes

truly are sporadic (as the customer claims), the I/O buffer will be flushed out by the time the

next round of application I/O begins.
Removing the FILE_FLAG_NO_BUFFERING flag will

also help, because that allows the operating system disk cache to get involved. If the

application reads back from the file, the read can be satisfied from the disk cache, avoiding

the physical I/O entirely.
As a side note, the FILE_FLAG_WRITE_THROUGH flag is largely

ineffective nowadays, because SATA drivers ignore the flush request. The file system doesn’t

know that the driver is lying to it, so it will still do all the work on the assumption that the

write-through request worked, even though we know that the extra work is ultimately

pointless.
For example, NTFS will issue metadata writes with a flush to ensure that the data

on the physical media is consistent. But if the driver is ignoring flush requests, all this extra

work accomplishes nothing aside from wasting I/O bandwidth. Even worse, NTFS thinks that

https://devblogs.microsoft.com/oldnewthing/20140306-00/?p=1583
http://blogs.msdn.com/b/oldnewthing/archive/2009/06/11/9725386.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/09/09/10059575.aspx

2/2

the data on the drive is physically consistent, but it isn’t. The result is that a poorly-timed

power outage (or device removal) can result in metadata corruption that takes a chkdsk to

repair.

Now, it may be that the customer’s program is using the FILE_FLAG_NO_BUFFERING and

FILE_FLAG_WRITE_THROUGH flags for a specific purpose unrelated to performance, so you

can’t just go walking in and ripping them out without understanding why they were there.

But if they added the flags thinking that it would make the program run faster, then they

were operating under a false assumption.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

