
1/5

February 3, 2014

How can I make a WNDPROC or DLGPROC a member of
my C++ class?

devblogs.microsoft.com/oldnewthing/20140203-00

Raymond Chen

Continuing my discussion of
How can I make a callback function a member of my C++

class?

Common special cases for wanting to use a member function as a
callback function are the

window procedure and its cousin the
dialog procedure.
The question, then, is where to put

the reference data.

Let’s start with window procedures.
The CreateWindow function and its close friend

CreateWindowEx let you pass your reference
data as the final parameter, prototyped as

LPVOID lpParam .
As noted in the documentation,
that value is passed back to the window

procedure by the
 WM_NCCREATE and
 WM_CREATE messages
as part of the CREATESTRUCT

structure.
One of the first messages passed to a window is
 WM_NCCREATE ,
so that’s where

we’ll grab the reference data and save it for later.

You can follow along
in this simple C++ program:
The static window procedure handles the

WM_NCCREATE message by
extracting the lpCreateParams from the
 CREATESTRUCT and

saving it in the
 GWLP_USERDATA window bytes.
That value is a special per-window storage

location provided
for the benefit of the window procedure,
and most people use it to store

their context parameter for
safekeeping.

If the message is not
 WM_NCCREATE ,
then we retrieve the context parameter from
where we

had stashed it.

Either way, we end up with a copy of the context parameter.
If you want your window

procedure to be a member function,
the natural choice for the context parameter is the

this
pointer for the instance.
The static window procedure therefore tends to look like this:

https://devblogs.microsoft.com/oldnewthing/20140203-00/?p=1893
http://blogs.msdn.com/b/oldnewthing/archive/2014/01/27/10492898.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/04/22/410773.aspx

2/5

LRESULT CALLBACK MyWindowClass::s_WndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

MyWindowClass *pThis; // our "this" pointer will go here

if (uMsg == WM_NCCREATE) {

 // Recover the "this" pointer which was passed as a parameter

 // to CreateWindow(Ex).

 LPCREATESTRUCT lpcs = reinterpret_cast<LPCREATESTRUCT>(lParam);

 pThis = static_cast<MyWindowClass*>(lpcs->lpCreateParams);

 // Put the value in a safe place for future use

 SetWindowLongPtr(hwnd, GWLP_USERDATA,

 reinterpret_cast<LONG_PTR>(pThis));

} else {

 // Recover the "this" pointer from where our WM_NCCREATE handler

 // stashed it.

 pThis = reinterpret_cast<MyWindowClass*>(

 GetWindowLongPtr(hwnd, GWLP_USERDATA));

}
if (pThis) {

 // Now that we have recovered our "this" pointer, let the

 // member function finish the job.

 return pThis->WndProc(hwnd, uMsg, wParam, lParam);

}
// We don't know what our "this" pointer is, so just do the default

// thing. Hopefully, we didn't need to customize the behavior yet.

return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

You pass the the this pointer to CreateWindow
as the last parameter, so that the window

procedure can pick it up.

hwnd = CreateWindow(... other parameters..., this);

For dialog boxes, you can do basically the same thing.
It’s just that the bookkeeping is slightly

different.

The ...Param versions of the dialog box functions
are the ones which let you pass

reference data.

The dialog procedure receives the reference data in the
 lParam passed with the

WM_INITDIALOG .

The system-provided secret hiding place for dialog boxes is called
 DWLP_USER .

3/5

INT_PTR CALLBACK MyDialogClass::s_DlgProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

MyDialogClass *pThis; // our "this" pointer will go here

if (uMsg == WM_INITDIALOG) {

 // Recover the "this" pointer which was passed as the last parameter

 // to the ...Dialog...Param function.

 pThis = reinterpret_cast<MyDialogClass*>(lParam);

 // Put the value in a safe place for future use

 SetWindowLongPtr(hdlg, DWLP_USER,

 reinterpret_cast<LONG_PTR>(pThis));

} else {

 // Recover the "this" pointer from where our WM_INITDIALOG handler

 // stashed it.

 pThis = reinterpret_cast<MyDialogClass*>(

 GetWindowLongPtr(hdlg, DWLP_USER));

}
if (pThis) {

 // Now that we have recovered our "this" pointer, let the

 // member function finish the job.

 return pThis->DlgProc(hwnd, uMsg, wParam, lParam);

}
// We don't know what our "this" pointer is, so just do the default

// thing. Hopefully, we didn't need to customize the behavior yet.

return FALSE; // returning FALSE means "do the default thing"

}

The above code should look really familiar, since it’s
the same as the window procedure case,

just with slightly different bookkeeping.

The resulting classes look like this:

4/5

class MyWindowClass

{

... other class stuff goes here ...

// This is the static callback that we register

static LRESULT CALLBACK s_WndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

// The static callback recovers the "this" pointer and then

// calls this member function.

LRESULT WndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam);

};
void MyWindowClass::SomeMemberFunction()

{

// to register the class

WNDCLASS wc;

... fill out the window class as normal ...

wc.lpfnWndProc = MyWindowClass::s_WndProc;

wc.lpszClassName = TEXT("MyWindowClass");

RegisterClass(&wc);

// to create a window

hwnd = CreateWindow(TEXT("MyWindowClass"),

 ... other parameters as usual ...,

 this);

}

class MyDialogClass

{

... other class stuff goes here ...

// This is the static callback that we register

static INT_PTR CALLBACK s_DlgProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam);

// The static callback recovers the "this" pointer and then

// calls this member function.

INT_PTR DlgProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam);

};
void MyDialogClass::SomeMemberFunction()

{

// to create the dialog box

DialogBoxParam(... other parameters as usual ...,

 reinterpret_cast<LPARAM>(this));

}

Okay, I’ll try to write something more interesting for next week.
But at least I wrote this part

down so I can point people at it
in the future.

Bonus chatter:
As commenter Ben noted last week,
DDEML
is another component that

uses the implicit reference data model.
In the DDEML case, you use
 DdeSetUserHandle to

set the reference data
and
 DdeQueryConvInfo to retrieve it.

(Various errors have been corrected based on comments, thanks everybody!)

http://msdn.microsoft.com/library/ms648712

5/5

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

