
1/5

January 17, 2014

Psychic debugging: Why messages aren't getting
processed by your message pump

devblogs.microsoft.com/oldnewthing/20140117-00

Raymond Chen

The second parameter to the
 GetMessage
is an optional window handle that is used to tell

the
 GetMessage function to retrieve
only messages that belong to the specified window.

A filtered
 GetMessage
is nearly always a bad idea,
because your program will not respond

to messages that don’t meet
the filter.
Unlike a filtered PeekMessage (which simply
returns

“no messages satisfy the filter”),
 GetMessage blocks your thread and does not return
until a

satisfactory message arrives.
Instead, they just pile up like newspapers on your doorstep.

A common mistake I encounter is using a filtered
 GetMessage as the main message pump:

hwnd = CreateWindow(...);

if (hwnd == NULL) { return error }

while (GetMessage(&msg, hwnd, 0, 0)) {

...

}

I don’t know for sure, but I’m guessing that the author said,
“Well, I created only one

window, so clearly that is the only
window that can receive messages,
and therefore that is

the only window I care about.”

That may be the only window you explicitly created
in that function,
but there are still plenty

of opportunities
for other windows to get created.
For example, there may be child windows

of your main window.
Or there may be hidden windows created by other components
such as

OLE which are used for cross-thread communication.
Filtering your message pump’s
 Get‐

Message prevents those other windows
from receiving queued messages,
and consequently

prevents those windows from getting done
whatever it was you asked them to do.

When a support request comes in for a program that hangs
or acts erratically,
you don’t think

to look at the message pump,
because that is nearly always just boilerplate code.
Only when

you glance at it and notice that the boilerplate
code has been tweaked do you realize that
the

tweaking is the source of the problem.
(And when I point out the mistake, I may get a “Thank

https://devblogs.microsoft.com/oldnewthing/20140117-00/?p=2053

2/5

you”
and possibly even a “I didn’t realize that”,
but never a
“This is what I was thinking when

I wrote that in the first place,”
so I never figure out why they went to the extra effort of

adding a
 GetMessage filter.)

Armed with this new psychic power, you can help this
customer out:

3/5

I can’t get combo boxes to work outside of a dialog box.
When used as a standalone window,
the combo box doesn’t work correctly.
It doesn’t respond to mouse hover,
sometimes it ignores
clicks,
sometimes it makes my app hang when I select an item with the
mouse.
But if I put the
combo box inside a dialog,
then it works perfectly.
As you can see in the attached project,
the
exact same function (CreateCombo)
works if called from a dialog box, but not from a regular
window.
Is there something special about combo boxes that prevent
them from being used
outside of a dialog box?

4/5

void CreateCombo(HWND hwndParent)

{

HWND hwndCombo = CreateWindow(TEXT("combobox"), 0,

 WS_BORDER | WS_CHILD | WS_VISIBLE | CBS_DROPDOWNLIST,

 10, 10, 200, 200, hwndParent, NULL, g_hinst);

ComboBox_AddString(hwndCombo, TEXT("Item 0"));

ComboBox_AddString(hwndCombo, TEXT("Item 1"));

ComboBox_AddString(hwndCombo, TEXT("Item 2"));

ComboBox_AddString(hwndCombo, TEXT("Item 3"));

ComboBox_AddString(hwndCombo, TEXT("Item 4"));

ComboBox_AddString(hwndCombo, TEXT("Item 5"));

ComboBox_AddString(hwndCombo, TEXT("Item 6"));

ComboBox_AddString(hwndCombo, TEXT("Item 7"));

ComboBox_AddString(hwndCombo, TEXT("Item 8"));

ComboBox_AddString(hwndCombo, TEXT("Item 9"));

}

// Dialog box version

INT_PTR CALLBACK DialogProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

case WM_INITDIALOG:

 CreateCombo(hdlg);

 return TRUE;

case WM_CLOSE:

 EndDialog(hdlg, 0);

 return TRUE;

}
return FALSE;

}

void TestDialog()

{

DialogBox(g_hinst, MAKEINTRESOURCE(IDD_DIALOG),

 NULL, DialogProc);

}

// Plain window version

LRESULT CALLBACK WndProc(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

case WM_CREATE:

 CreateCombo(hwnd);

 return 0;

case WM_DESTROY:

 PostQuitMessage(0);

 return 0;

}
return DefWindowProc(hwnd, uMsg, wParam, lParam);

}

void TestWindow()

{

WNDCLASS wc = { 0, WndProc, 0, 0, g_hinst, NULL, NULL,

5/5

 (HBRUSH)(COLOR_WINDOW+1), NULL, TEXT("Test"));

RegisterClassEx(&wc); // succeeds

HWND hwnd = CreateWindow(TEXT("Test"), TEXT("Test"),

 WS_OVERLAPPEDWINDOW | WS_VISIBLE | WS_CLIPCHILDREN,

 CW_USEDEFAULT, CW_USEDEFAULT,

 CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL, g_hinst, NULL);

MSG msg;

while (GetMessage(&msg, hwnd, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

}
UnregisterClass(TEXT("Test"), g_hinst);

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

