
1/3

January 13, 2014

Creating a listview with checkboxes on some items but
not others

devblogs.microsoft.com/oldnewthing/20140113-00

Raymond Chen

Today’s Little Program creates a listview with checkboxes
on some items but not other.

The
 LVS_EX_CHECKBOXES
extended style is really just a convenience style.
Everything it

does you could have done yourself,
with a bit more typing.

It creates a state image list consisting of
an unchecked box (state 1) and a checked box

(state 2).
You could have done this yourself with
 ImageList_Create followed by
a

few calls to
DrawFrameControl.

When you hit the space bar or click on the check box,
the state image toggles between 1

and 2.
You could have done this yourself by responding to
 LVN_KEYDOWN (for the space

bar),
and the mouse notification messages for the clicks.
(For the mouse notifications,

see if the click was on
 LVHT_ONITEMSTATEICON .)

But still, it’s convenient having the listview control do
this grunt work for you.
But what if

you want to remove the check box from some items?

The listview control turns on the state image and toggles
it by doing the moral equivalent of a

ListView_SetCheckState
on the item,
so all you have to do is respond to the
 LVN_ITEM‐

CHANGING that comes with
any item change and reject the state change.

Start with our
scratch program
and make these changes.
Remember, Little Programs do little

or no error checking.

https://devblogs.microsoft.com/oldnewthing/20140113-00/?p=2103
http://blogs.msdn.com/b/oldnewthing/archive/2005/08/01/445998.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/07/23/54576.aspx

2/3

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 g_hwndChild = CreateWindow(WC_LISTVIEW, NULL,

 WS_CHILD | WS_VISIBLE | LVS_REPORT,

 0, 0, 0, 0, hwnd, (HMENU)1, g_hinst, 0);

 ListView_SetExtendedListViewStyle(g_hwndChild,

 LVS_EX_CHECKBOXES);

 LVCOLUMN col;

 col.mask = LVCF_TEXT | LVCF_WIDTH;

 col.cx = 200;

 col.pszText = TEXT("Name");

 ListView_InsertColumn(g_hwndChild, 0, &col);

 LVITEM item;

 item.mask = LVIF_TEXT;

 item.iSubItem = 0;

 item.pszText = TEXT("Alpha");

 ListView_InsertItem(g_hwndChild, &item);

 item.pszText = TEXT("Beta");

 ListView_InsertItem(g_hwndChild, &item);

 item.pszText = TEXT("Gamma");

 ListView_InsertItem(g_hwndChild, &item);

 item.pszText = TEXT("Delta");

 ListView_InsertItem(g_hwndChild, &item);

 return TRUE;

}

Okay, so far the program adds four items,
each with a check box.
But let’s say we want to

remove the check boxes
from the even-numbered items.

LRESULT

OnNotify(HWND hwnd, int idFrom, NMHDR *pnm)

{

 if (idFrom == 1) {

 switch (pnm->code) {

 case LVN_ITEMCHANGING:

 {

 LPNMLISTVIEW pnmlv = CONTAINING_RECORD(pnm, NMLISTVIEW, hdr);

 if (pnmlv->iItem >= 0 &&

 if (pnmlv->iItem % 2 == 0 &&

 (pnmlv->uChanged & LVIF_STATE)) {

 return TRUE; // reject changes to even-numbered items

 }

 }

 break;

 }

 }

 return 0;

}

 HANDLE_MSG(hwnd, WM_NOTIFY, OnNotify);

3/3

We add a handler for
 LVN_ITEMCHANGING that says,
“If this is a notification for an even-

numbered item,
and they want to change the state,
then block the state change.”
This ensures

that nobody can turn on the state image,
which means that the checkbox never shows up.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

