
1/4

January 9, 2014

Can you dllexport/dllimport an inline function?
devblogs.microsoft.com/oldnewthing/20140109-00

Raymond Chen

The MSDN documentation on the subject of
Defining Inline C++ Functions with dllexport

and dllimport
was written with
compiler-colored glasses.
The statements are perfectly true,

but they use terminology
that only compiler-writers understand.

The short version is that all modules which share an inline function
are considered to be part

of the same program,
so all of the C++ rules regarding inline functions in programs
need to

be followed.

Let’s look at the paragraphs one at a time
and translate them into English.

You can define as inline a function with the
dllexport attribute.
In this case, the function is
always instantiated and exported,
whether or not any module in the program references the
function.
The function is presumed to be imported by another program.

Okay, first of all, what is instantiation?

In this context, the term instantiation when applied
to an inline function means
“The code is

generated (instantiated)
for the function as if it had not been
marked inline.”

For the purpose of discussion, let’s say that you have
a function written as

__declspec(dllexport)

inline int times3(int i) { return i * 3; }

Suppose that you compile this into a DLL,
and that DLL also calls the inline function.

int times9(int i) { return times3(times3(i)); }

What code gets generated?

The times9 function sees that the
 times3 function is inline,
so it inlines the function

body and there is no
trace of a times3 function at all.
The compiler generates the code as if

it had
been written

int times9(int i) { return (i * 3) * 3; }

https://devblogs.microsoft.com/oldnewthing/20140109-00/?p=2123
http://msdn.microsoft.com/en-us/library/xa0d9ste
http://blogs.msdn.com/b/oldnewthing/archive/2011/05/12/10163578.aspx

2/4

That would normally be the end of it,
except that
the times3 function was marked

dllexport .
This means that the compiler also generates
and exports
a plain old function

called times3
even though nobody in the DLL actually calls it as such.
The code is

generated and exported because you told the
compiler to export the function, so it needs to

generate
a function in order to export it.

This is not anything special about the dllexport
keyword.
This is just a side-effect of the

rule that
“If you generate a pointer to an inline function,
the compiler must generate a non-

inline version of the
function and use a pointer to that non-inline version.”
In this case, the

dllexport causes a pointer
to the function to be placed in the export table.

Okay, next paragraph:

You can also define as inline a function declared
with the dllimport attribute.
In this case,
the
function can be expanded (subject to /Ob specifications),
but never instantiated.
In particular,
if
the address of an inline imported function is taken,
the address of the function residing in the
DLL is returned.
This behavior is the same as taking the address
of a non-inline imported
function.

What this is trying to say is that if you declare
an inline function as dllimport,
the compiler

treats it just like a plain old inline
function:
it inlines the function based on the usual rules for

inlining.
But if the compiler chooses to generate code for the function
as if it were not inline

(because the compiler decided to ignore the inline qualifier,
or because somebody took the

address of the inline function),
it defers to the generated code from the original DLL,
because

you said,
“Hey, the non-inline version of this
function is also available from that DLL over

there,”
and the compiler says,
“Awesome, you saved me the trouble of having to generate the

non-inline
version the function.
I can just use that one!”

The “I can just use that one!” is not just an optimization.
It is necessary in order to comply

with the language standard,
which says [dcl.fct.spec]
that
“An inline function with external

linkage
shall have the same address in all translation units.”
This is the compiler-speak way

of saying that the address of an
inline function must be the same regardless of who asks.
You

can’t have a different copy of the inline function in each DLL,
because that would result in

them having different addresses.
(The “with external linkage” means that the rule doesn’t

apply to
static inline functions, which is behavior consistent
with static non-inline functions.)

Okay, let’s try paragraph three:

These rules apply to inline functions whose definitions appear
within a class definition.
In
addition, static local data and strings in inline functions
maintain the same identities between
the DLL and client
as they would in a single program
(that is, an executable file without a DLL
interface).

3/4

The first part of the paragraph is just saying that
an inline function defined as part of a class

definition counts
as an inline function for the purpose of this section.
No big deal; we were

expecting that.

Update: On the other hand, it is a big deal, because it
results in inline functions being

exported when you may not realize it.
Consider:

class __declspec(dllexport) SimpleValue

{

public:

SimpleValue() : m_value(0) { }

void setValue(int value);

int getValue() { return m_value; }

private:

int m_value;

};

The SimpleValue constructor and the
 SimpleValue::getValue method
are exported

inline functions!
Consequently, any change to the constructor or to
 getValue requires a

recompilation of all code
that constructs a SimpleValue or calls
the getValue method.

End update.

The second part says that if the inline function uses a static
local variable or a string literal,
it

is the same static local variable or string literal everywhere.
This is required by the standard

[dcl.fct.spec] and is what you
would naturally expect:

int inline count()

{

static int c = 0;

return ++c;

}

You expect there to be only one counter.

And the final paragraph:

Exercise care when providing imported inline functions.
For example, if you update the DLL,
don’t assume that the client will use the changed version of the DLL.
To ensure that you are
loading the proper version of the DLL,
rebuild the DLL’s client as well.

This is just working through the consequences of the language requirement
[dcl.fct.spec] that

an inline function “shall have exactly the
same definition” everywhere.
If you change the

definition in the exporting DLL
and don’t recompile the importing DLL with the new

definition,
you have violated a language constraint and the behavior is undefined.

So there you have it.
The rules of inline exported functions translated into English.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

