
1/4

October 3, 2013

The relationship between module resources and
resource-derived objects in 32-bit Windows

devblogs.microsoft.com/oldnewthing/20131003-00

Raymond Chen

Last time, we saw how 16-bit Windows converted resources attached to an EXE or DLL file

(which I called module resources for lack of a better term) to user interface resources. As a

refresher:

16-bit Resources

Resource type Operation Result

Icon LoadIcon , etc. Reference

Cursor LoadCursor , etc. Reference

Accelerator LoadAccelerator , etc. Reference

Dialog CreateDialog , etc. Copy

Menu LoadMenu , etc. Copy

Bitmap LoadBitmap , etc. Copy

String LoadString Copy

String FindResource Reference

During the conversion from 16-bit Windows to 32-bit Windows, some of these rules changed.

Specifically, icons, cursors, and accelerator tables are no longer references to the resource.

Instead, the resource is treated as a template from which the actual user interface resource is

constructed.

Resource type Operation Result

Icon LoadIcon , etc. Copy*

https://devblogs.microsoft.com/oldnewthing/20131003-00/?p=3043
http://blogs.msdn.com/b/oldnewthing/archive/2013/10/02/10453564.aspx

2/4

32-bit Resources

Cursor LoadCursor , etc. Copy*

Accelerator LoadAccelerator , etc. Copy*

Dialog CreateDialog , etc. Copy

Menu LoadMenu , etc. Copy

Bitmap LoadBitmap , etc. Copy

String LoadString Copy

String FindResource Reference

Uh-oh, what’s up with those asterisks?
Let’s start with accelerator tables. In order to simulate

the reference semantics of 16-bit accelerator tables, the copy is cached with a reference count,

so that if you ask for the same accelerator table 1000 times, the first request creates a new

accelerator table, and the other 999 requests just increment the reference count and return

the same handle back. The result is that the window manager emulates reference semantics,

but with an initial copy. When the reference count on an accelerator table drops to zero, then

the resource is freed.
Icons and cursors are the same, only weirder.
If you pass the

LR_SHARED flag, then the window manager simulates reference semantics by creating a

copy of the icon or cursor the first time it is requested, and all subsequent requests with the

LR_SHARED flag return the same handle back again.¹ The LoadCursor and LoadIcon

functions are just wrappers around LoadImage that pass LR_SHARED , so applications

written to the old 16-bit API still work the 16-bit way. (Even today, a lot of applications rely

on the old 16-bit behavior.)
If you don’t pass the LR_SHARED flag, then you get a brand new

copy of the icon or cursor. Since the only way to get this behavior is to call the new-for-Win32

function LoadImage , there is no compatibility issue.
Based on the above discussion, we can

flesh out the table a bit more:

Resource type Operation Result

Icon LoadIcon

LoadImage with LR_SHARED

Cached copy

LoadImage without LR_SHARED Copy

Cursor LoadCursor
LoadImage with LR_SHARED

Cached copy

LoadImage without LR_SHARED Copy

Accelerator LoadAccelerator , etc. Cached copy

3/4

32-bit Resources

Dialog CreateDialog , etc. Copy

Menu LoadMenu , etc. Copy

Bitmap LoadBitmap , etc. Copy

String LoadString Copy

String FindResource Reference

Another way of looking at the above table is to break it into two tables, one for operations

that had a 16-bit equivalent, and one for operations that are unique to Win32:

32-bit Resource Creation Operations with 16-bit Equivalents

Resource type Operation Result

Icon LoadIcon Simulated reference

Cursor LoadCursor Simulated reference

Accelerator LoadAccelerator , etc. Simulated reference

Dialog CreateDialog , etc. Copy

Menu LoadMenu , etc. Copy

Bitmap LoadBitmap , etc. Copy

String LoadString Copy

String FindResource Reference

32-bit Resource Creation Operations Without 16-bit Equivalents

Resource type Operation Result

Icon LoadImage with LR_SHARED Simulated reference

LoadImage without LR_SHARED Copy

Cursor LoadImage with LR_SHARED Simulated reference

LoadImage without LR_SHARED Copy

4/4

Now we can answer an old question: “Do icons created from resources depend on the

underlying resource?”
The answer is no, at least not in 32-bit Windows. The bits are

extracted from the module resource data and converted into a icon object, and if you passed

the LR_SHARED flag, it is added to the cache of previously-created icons.
¹ Update: If you

read carefully, you’ll realize that LR_SHARED stores the results in a cache and pays no

attention to the size. The cache is keyed only by the resource module and ID; the size is

ignored. This is why MSDN says “Do not use LR_SHARED for images that have nonstandard

sizes.”
Suppose you load a resource with LR_SHARED and a nonstandard size. If you are the

first person to load that resource, then the nonstandard size gets loaded and put into the

cache. The next person to ask for that resource and who asks for a LR_SHARED copy will get

the nonstandard-sized resource from the cache regardless of what size they actually

wanted.
Conversely, suppose a standard-size resource is already in the cache. You pass

LR_SHARED and a nonstandard size. The cache returns you the original standard-size

resource, ignoring the size you requested.
To avoid this craziness, the rule is that any request

for cached resources must use the standard size.

This requirement wasn’t a problem in 16-bit Windows because 16-bit Windows had no way of

requesting a resource at a nonstandard size. And since LR_SHARED is a new flag introduced

in 32-bit Windows, all code which uses it can be expected to understand the Win32 rules.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2012/02/15/10267976.aspx#10268281
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

