
1/3

August 6, 2013

The mysterious ways of the params keyword in C#
devblogs.microsoft.com/oldnewthing/20130806-00

Raymond Chen

If a parameter to a C# method is declared with the
 params keyword,
then it can match

either itself or a comma-separated list of
um itselves(?).
Consider:

class Program {

 static void Sample(params int[] ints) {

 for (int i = 0; i < ints.Length; i++) {

 System.Console.WriteLine("{0}: {1}", i, ints[i]);

 }

 System.Console.WriteLine("-----");

 }

 public static void Main() {

 Sample(new int[] { 1, 2, 3 });

 Sample(9, 10);

 }

}

This program prints

0: 1

1: 2

2: 3

0: 9

1: 10

The first call to Sample
does not take advantage of the params keyword
and passes the

array explicitly (formally known as
normal form).
The second call, however, specifies the

integers directly
as if they were separate parameters.
The compiler generates a call to the

function in what the language
specification calls expanded form.

Normally, there is no conflict between these two styles of
calling a function with a params

parameter
because only one form actually makes sense.

Sample(new int[] { 0 }); // normal form

Sample(0); // expanded form

https://devblogs.microsoft.com/oldnewthing/20130806-00/?p=3603

2/3

The first case must be called in normal form because you cannot
convert an int[] to an

int ;
conversely, the second case must be called in expanded form because
you cannot

convert an int to an int[] .

There is no real problem in choosing between the two cases
because T and T[] are not

implicitly
convertible to each other.

Oh wait.

Unless T is object !

class Program {

 static void Sample(params object[] objects) {

 for (int i = 0; i < objects.Length; i++) {

 System.Console.WriteLine("{0}: {1}", i, objects[i]);

 }

 System.Console.WriteLine("-----");

 }

 public static void Main() {

 Sample(new object[] { "hello", "there" });

 }

}

There are two possible interpretations for that call to
 Sample :

Normal form: This is a call to Sample
where the objects is an array of length 2,

with elements "hello" and "there" .

Expanded form: This is a call to Sample
where the objects is an array of length 1,

whose sole element is the array
 new object[] { "hello", "there" } .

Which one will the compiler choose?

Let’s look at the spec.

3/3

A function member is said to be an
applicable function member
with respect to an argument list
A when all of the following
are true:

The number of arguments in A
is identical to the number of parameters in the function
member
declaration.
For each argument in A ,
[blah blah blah], and

for a value parameter or a parameter array, an
implicit conversion exists from the
type of the argument
to the type of the corresponding parameter, or
[blah blah blah]

For a function member that includes a parameter array,
if the function member is applicable by
the above rules,
it is said to be applicable in
normal form.
If a function member that includes a
parameter array is not
applicable in its normal form,
the function member may instead be
applicable in its
expanded form:

…

(I removed some text not relevant to the discussion.)

Note that the language specification prefers normal form over
expanded form:
It considers

expanded form only if normal form does not apply.

Okay, so what if you want that call to be applied in expanded form?
You can simulate it

yourself,
by manually performing the transformation that the compiler
would do:

 public static void Main() {

 Sample(new object[] { new object[] { "hello", "there" } });

 }

Yes, it’s extra typing.
Sorry.

Raymond Chen

Follow

http://msdn.microsoft.com/en-us/library/aa691337(v=VS.71).aspx
http://msdn.microsoft.com/en-us/library/aa691280(v=vs.71).aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

