
1/6

June 10, 2013

A big little program: Monitoring Internet Explorer and
Explorer windows, part 1: Enumeration

devblogs.microsoft.com/oldnewthing/20130610-00

Raymond Chen

Normally, Monday is the day for Little Programs,
but this time I’m going to spend a few days

on a single Little Program.
Now, this might very well disqualify it from the name Little

Program,
but the concepts are still little;
all I’m doing is
snapping blocks together.
(Plus, it’s

my Web site, so you can just suck it.)

The goal of our Little Program is to monitor Internet Explorer
and Explorer windows as they

are created, navigate to new locations,
and are destroyed.
(In principle, other Web browsers

can participate in this protocol,
but I don’t know of any that do, so I’ll assume that only

Explorer
and Internet Explorer
register with the ShellWindows object.)

The key to all this is the
 ShellWindows object,
which we’ve
spent time
playing with
in the

past.

Today we’re going to write a helper function that takes an object
returned by the Shell‐

Windows object
and extract the window handle and current location.
This is the guts of our

Little Program,
so I’m basically doing the cool stuff up front,
and then leaving the annoying

bits for later.

#define UNICODE

#define _UNICODE

#define STRICT

#define STRICT_TYPED_ITEMIDS

#include <windows.h>

#include <ole2.h>

#include <iostream>

#include <shlobj.h>

#include <atlbase.h>

#include <atlalloc.h>

Now that we got the preliminary header file goop out of the way,
we can write the exciting

function.

https://devblogs.microsoft.com/oldnewthing/20130610-00/?p=4133
http://blogs.msdn.com/b/oldnewthing/archive/2009/08/04/9856634.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/04/22/10412906.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/03/18/10403054.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/07/05/435657.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/07/15/184076.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/12/71851.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2013/01/24/10387757.aspx

2/6

HRESULT GetBrowserInfo(IUnknown *punk, HWND *phwnd,

 PWSTR *ppszLocation)

{

HRESULT hr;

CComPtr<IShellBrowser> spsb;

hr = IUnknown_QueryService(punk, SID_STopLevelBrowser,

 IID_PPV_ARGS(&spsb));

if (FAILED(hr)) return hr;

hr = spsb->GetWindow(phwnd);

if (FAILED(hr)) return hr;

hr = GetLocationFromView(spsb, ppszLocation);

if (SUCCEEDED(hr)) return hr;

return GetLocationFromBrowser(punk, ppszLocation);

}

Awfully short for what purported to be an exciting function,
but that’s because I hid the

exciting parts in helper functions.

First, we take the object and ask to locate the top-level browser,
since that’s where some of

the interesting information hangs out.
We ask for the IShellBrowser so we can get the

window handle via the base class method
 IOleWindow::GetWindow .
That’s the easy part.

Getting the current location is tricky,
because Explorer windows do it one way,
and Internet

Explorer does it another way.
That’s because Explorer windows browse the shell namespace,

whereas Internet Explorer windows browse the Internet.
Shell namespace locations are

represented by pidls,
whereas Internet locations are represented by URLs.

First, the Explorer way:

3/6

HRESULT GetLocationFromView(IShellBrowser *psb,

 PWSTR *ppszLocation)

{

HRESULT hr;

*ppszLocation = nullptr;

CComPtr<IShellView> spsv;

hr = psb->QueryActiveShellView(&spsv);

if (FAILED(hr)) return hr;

CComQIPtr<IPersistIDList> sppidl(spsv);

if (!sppidl) return E_FAIL;

CComHeapPtr<ITEMIDLIST_ABSOLUTE> spidl;

hr = sppidl->GetIDList(&spidl);

if (FAILED(hr)) return hr;

CComPtr<IShellItem> spsi;

hr = SHCreateItemFromIDList(spidl, IID_PPV_ARGS(&spsi));

if (FAILED(hr)) return hr;

hr = spsi->GetDisplayName(SIGDN_DESKTOPABSOLUTEPARSING,

 ppszLocation);

return hr;

}

The maze we navigate here is to start from the
 IShellBrowser and get to the
 IShellView

by calling
 IShellBrowser::QueryActiveShellView .
It’s rather annoying that the

IShellBrowser::QueryActiveShellView
method always returns you an
 IShellView

rather than being forward-looking and
letting you pass a riid / ppv pair.
(The shell has for

the most part learned this lesson, and new
object creation or retrieval functions tend to take

the
 riid / ppv pair so you can specify
your ring size when you place the order instead of

always getting
a size 6 ring and then having to resize it.)
Since
 IShellBrowser::Query‐

ActiveShellView
doesn’t let us specify the desired interface, we have to
do the Query‐

Interface ourselves
to convert the IShellView into what we really
want: The IPersist‐

IDList .

From the IPersistIDList we ask for the pidl,
which now tells us what the Explorer

window is looking at.
For display purposes, we convert it into a string by
converting the pidl

into an IShellItem
(notice the handy
 riid / ppv pair produced by the
type-checking

IID_PPV_ARGS macro)
and then asking the shell item for its parsing name.

4/6

(We saw techniques similar to this
a few years ago.)

If it turns out we don’t have an Explorer window, then we try
again using the Web browser

interfaces:

HRESULT GetLocationFromBrowser(IUnknown *punk,

 PWSTR *ppszLocation)

{

HRESULT hr;

CComQIPtr<IWebBrowser2> spwb2(punk);

if (!spwb2) return E_FAIL;

CComBSTR sbsLocation;

hr = spwb2->get_LocationURL(&sbsLocation);

if (FAILED(hr)) return hr;

return SHStrDupW(sbsLocation, ppszLocation);

}

We turn the object into an IWebBrowser2 and ask
for the LocationURL property.
The

annoyance here is that
 IWebBrowser2 is an automation interface,
so it uses BSTR for

passing strings around,
which is different from
 IShellItem::GetDisplayName
which uses

CoTaskMemAlloc ,
since that is the convention for non-dispatch COM interfaces.
We

therefore have to convert the BSTR
to a task-allocated
 PWSTR before returning,
so that the

return value is consistent with
 GetLocationFromView .

Finally, we call the function in a loop to test that it actually works:

http://blogs.msdn.com/b/oldnewthing/archive/2004/07/20/188696.aspx

5/6

CComPtr<IShellWindows> g_spWindows;

HRESULT DumpWindows()

{

CComPtr<IUnknown> spunkEnum;

HRESULT hr = g_spWindows->_NewEnum(&spunkEnum);

if (FAILED(hr)) return hr;

CComQIPtr<IEnumVARIANT> spev(spunkEnum);

for (CComVariant svar;

 spev->Next(1, &svar, nullptr) == S_OK;

 svar.Clear()) {

 if (svar.vt != VT_DISPATCH) continue;

 HWND hwnd;

 CComHeapPtr<WCHAR> spszLocation;

 if (FAILED(GetBrowserInfo(svar.pdispVal, &hwnd,

 &spszLocation))) continue;

 std::wcout << hwnd

 << L” ”

 << static_cast<PCWSTR>(spszLocation)

 << std::endl;

}
return S_OK;

}

int __cdecl wmain(int, PWSTR argv[])

{

CCoInitialize init;

g_spWindows.CoCreateInstance(CLSID_ShellWindows);

DumpWindows();

g_spWindows.Release();

return 0;

}

Yes, I stupidly made g_spWindows
a global variable, but it’ll come in handy later.
(It’s still

stupid, but at least there’s a reason for
the stupidity.)

Okay, we can take this program for a spin.
When you run it, it should print the window

handles and
locations of all your Explorer and Internet Explorer windows.

http://blogs.msdn.com/b/oldnewthing/archive/2004/05/20/135841.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/05/20/135841.aspx

6/6

Before we can start hooking up events to keep this list up to date,
we need to learn a bit about

connection points and using
dispatch interfaces as connection point interfaces.
We’ll spend a

few days on those topics,
then return to our program.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

