
1/2

April 25, 2013

If you’re going to use an interlocked operation to
generate a unique value, you need to use it before it’s
gone

devblogs.microsoft.com/oldnewthing/20130425-00

Raymond Chen

Is the Interlocked Increment function broken? One person seemed to think so.

We’re finding that the Interlocked Increment is producing duplicate values. Are there are
any know bugs in Interlocked Increment ?

Because of course when something doesn’t work, it’s because you are the victim of a vast

conspiracy. There is a fundamental flaw in the Interlocked Increment function that only

you can see. You are not a crackpot.

LONG g_lNextAvailableId = 0;

DWORD GetNextId()
{
 // Increment atomically
 InterlockedIncrement(&g_lNextAvailableId);

 // Subtract 1 from the current value to get the value
 // before the increment occurred.
 return (DWORD)g_lNextAvailableId – 1;
}

Recall that Interlocked Increment function increments a value atomically and returns the

incremented value. If you are interested in the result of the increment, you need to use the

return value directly and not try to read the variable you incremented, because that variable

may have been modified by another thread in the interim.

Consider what happens when two threads call Get Next Id simultaneously (or nearly so).

Suppose the initial value of g_lNext Available Id is 4.

https://devblogs.microsoft.com/oldnewthing/20130425-00/?p=4553
http://blogs.msdn.com/b/oldnewthing/archive/2011/02/10/10127054.aspx

2/2

First thread calls Interlocked Increment to increment from 4 to 5. The return value

is 5.

Second thread calls Interlocked Increment to increment from 5 to 6. The return

value is 6.

First thread ignores the return value and instead reads the current value of g_lNext ‐

Available Id , which is 6. It subtracts 1, leaving 5, and returns it.

Second thread ignores the return value and instead reads the current value of

g_lNext Available Id , which is still 6. It subtracts 1, leaving 5, and returns it.

Result: Both calls to Get Next Id return 5. Interpretation: “ Interlocked Increment is

broken.”

Actually, Interlocked Increment is working just fine. What happened is that the code

threw away the unique information that Interlocked Increment returned and instead

went back to the shared variable, even though the shared variable changed its value in the

meantime.

Since this code cares about the result of the increment, it needs to use the value returned by

Interlocked Increment .

DWORD GetNextId()
{
 // Increment atomically and subtract 1 from the
 // incremented value to get the value before the
 // increment occurred.
 return (DWORD)InterlockedIncrement(&g_lNextAvailableId) – 1;
}

Exercise: Criticize this implementation of IUnknown::Release :

STDMETHODIMP_(ULONG) CObject::Release()
{
InterlockedDecrement(&m_cRef);
if (m_cRef == 0)
{
 delete this;
 return 0;
}
return m_cRef;
}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

