
1/2

February 21, 2013

What does -1.#IND mean?: A survey of how the Visual C
runtime library prints special floating point values

devblogs.microsoft.com/oldnewthing/20130221-00

Raymond Chen

As every computer scientist knows, the IEEE floating point format reserves a number of

representations for infinity and non-numeric values (collectively known as NaN, short for not

a number). If you try to print one of these special values with the Visual C runtime library,

you will get a corresponding special result:

Output Meaning

1#INF Positive infinity

-1#INF Negative infinity

1#SNAN Positive signaling NaN

-1#SNAN Negative signaling NaN

1#QNAN Positive quiet NaN

-1#QNAN Negative quiet NaN

1#IND Positive indefinite NaN

-1#IND Negative indefinite NaN

Positive and negative infinity are generated by arithmetic overflow, or when the

mathematical result of an operation is infinite, such as taking the logarithm of positive zero.

(Don’t forget that IEEE floating point supports both positive and negative zero.) For math

nerds: IEEE arithmetic uses affine infinity, not projective, so there is no point at infinity.

Signaling and quiet NaNs are not normally generated by computations (with one exception

noted below), but you can explicitly create one for a floating-point type by using the

std::numeric_limits<T> class, methods signaling_NaN() and quiet_NaN() .

https://devblogs.microsoft.com/oldnewthing/20130221-00/?p=5183
http://www.bing.com/search?q=What+Every+Computer+Scientist+Should+Know+About+Floating+Point+Arithmetic
http://www.math.poly.edu/courses/projective_geometry/chapter_four/node2.html
http://www.cut-the-knot.org/WhatIs/Infinity/Projective.shtml
http://en.wikipedia.org/wiki/Point_at_infinity

2/2

Recall that there is not just one signaling and quiet NaN, but rather a whole collection of

them. The C runtime does not distinguish among them when printing, however. All signaling

NaNs are reported as 1#SNAN, regardless of the signal bits. The C runtime does report the

sign of the NaN, for what little that is worth.

The weird one is the Indefinite NaN, which is a special type of quiet NaN generated under

specific conditions. If you perform an invalid arithmetic operation like add positive infinity

and negative infinity, or take the square root of a negative number, then the IEEE standard

requires that the result be a quiet NaN, but it doesn’t appear to specify what quiet NaN

exactly. Different floating point processor manufacturers chose different paths. The term

Indefinite NaN refers to this special quiet NaN, whatever the processor ends up choosing it to

be.

Some floating point processors generate a quiet NaN with the signal bits clear but the sign bit

set. Setting the sign bit makes the result negative, so on those processors, you will see the

indefinite NaN rendered as a negative indefinite NaN. (The x86 is one of these processors.)

Other floating point processors generate a quiet NaN with the signal bits and the sign bit all

clear. Clearing the sign bit makes the result positive, so on those processors, you will see the

indefinite NaN rendered as a positive indefinite NaN.

In practice, the difference is not important, because either way, you have an indefinite NaN.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

