
1/3

December 28, 2012

What do HeapLock and HeapUnlock do, and when do I
need to call them?

devblogs.microsoft.com/oldnewthing/20121228-00

Raymond Chen

You never need to call the HeapLock and
 HeapUnlock functions under normal operation.

Assuming the heap is serialized
(which is the default),
all the standard heap functions like

HeapAllocate and HeapFree
will automatically serialize.

In fact, the way they serialize is by calling
the¹ HeapLock and
 HeapUnlock functions!

Nearly all heap operations complete in a single call.
If your heap is serialized, this means that

the heap operation
takes the heap lock,
does its work,
and then releases the heap lock and

returns.
If all heap operations were like this,
then there would be no need for
 HeapLock or

HeapUnlock .

Unfortunately, there is also the
 HeapWalk function,
which does a little bit of work, and then

returns
with a partial result.
The design for HeapWalk is that
the application calls the

function repeatedly
until it either gets all the results it wants, or gets bored and gives up.
But

wait, what if the heap changes while the application is
trying to walk through it?
To prevent

that from happening,
the program can call
 HeapLock before starting the enumeration,
and

HeapUnlock when it is done.
During the time the heap is locked,
other threads which

attempt to call a
 HeapXxx function with that same heap
will block until the heap is

unlocked.

The ability to lock the heap creates a lot of potential for craziness,
because the heap is a high-

traffic area.
As a result, it is very important that any code which calls
 HeapLock do very

little while the lock is held.
Take the lock, do your thing, and get out quickly.

But wait, there’s more.
Holding the heap lock blocks all other threads from
allocating or

freeing memory.
This puts the heap lock very low in your lock hierarchy.
Therefore,
while you

hold the heap lock,
you cannot block on synchronization objects whose owners might
try to

access the heap you just locked.
Consider the following:

https://devblogs.microsoft.com/oldnewthing/20121228-00/?p=5703

2/3

// Code in italics is wrong.

void BadIdea()

{

HeapLock(GetProcessHeap());

SendMessage(...);

HeapUnlock(GetProcessHeap());

}

Sending a message is a big deal.
The thread that is the target of the message
may be waiting

for the heap lock,
and now you’ve created a deadlock.
You won’t proceed until that thread

processes the message,
but that thread can’t process the message until you unlock the heap.

You might accidentally do something wrong while hold the heap lock
if you happen to trigger

a delay-loaded DLL,
in which case your call into that other DLL turns into a call
to Load‐

Library , and now you’ve lost control.
In practice,
the only thing you should be doing while

holding the heap lock
is calling HeapWalk and saving the results
locally, and in a way that

doesn’t allocate or free memory
on the heap you are walking!
Wait until after you unlock the

heap to
start studying the results you
collected or transfer the raw data into a more suitable

data structure.

Bonus chatter

Note that if you call
 HeapLock or HeapUnlock
on a heap that was created without

serialization
(HEAP_NO_SERIALIZATION),
then the results are undefined.
That’s because

passing the
 HEAP_NO_SERIALIZATION flag means
“Hey, Heap Manager,
don’t bother

locking this heap.
I will take responsibility for ensuring that only one thread
operates on this

heap at a time.”
If you later call
 HeapLock on a no-serialization heap,
the heap manager will

say,
“Wha?
You said that you would take care of serialization, not me!”

It’s like ordering a car and saying,
“Don’t bother installing door locks.
I will take

responsibility for ensuring the safety of the car.
(Say, by never letting the car leave a secured

facility.)”
And then a month later, calling OnStar and saying,
“Hi, can you remotely lock my

car for me? Thanks.”
Dude, you explicitly opted out of door locks.

(Amazingly, I encountered one developer who thought that
calling HeapLock on a no-

serialization heap
would cause other heap operations on the heap to be blocked,
even if they

passed the
 HEAP_NO_SERIALIZATION flag to those operations.
Um, no, the HeapLock

function cannot lock a
no-serialization heap because a no-serialization heap doesn’t have
lock

in the first place, at your request.)

Nitpicker’s corner

¹ s/the/the functional equivalents of/

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

