
1/4

November 29, 2012

Various ways of performing an operation asynchronously
after a delay

devblogs.microsoft.com/oldnewthing/20121129-00

Raymond Chen

Okay, if you have a UI thread that pumps messages, then the easiest
way to perform an

operation after a delay is to set a timer.
But let’s say you don’t have a UI thread that you can

count on.

One method is to burn a thread:

#define ACTIONDELAY (30 * 60 * 1000) // 30 minutes, say

DWORD CALLBACK ActionAfterDelayProc(void *)

{

Sleep(ACTIONDELAY);

Action();

return 0;

}

BOOL PerformActionAfterDelay()

{

DWORD dwThreadId;

HANDLE hThread = CreateThread(NULL, 0, ActionAfterDelayProc,

 NULL, 0, &dwThreadId);

BOOL fSuccess = hThread != NULL;

if (hThread) {

 CloseHandle(hThread);

}
return fSuccess;

}

Less expensive is to borrow a thread from the thread pool:

BOOL PerformActionAfterDelay()

{

return QueueUserWorkItem(ActionAfterDelayProc, NULL,

 WT_EXECUTELONGFUNCTION);

}

But both of these methods hold a thread hostage for the
duration of the delay.
Better would

be to consume a thread only when the action is
in progress.
For that, you can use a thread

pool timer:

https://devblogs.microsoft.com/oldnewthing/20121129-00/?p=5953
http://blogs.msdn.com/b/oldnewthing/archive/2005/07/22/441785.aspx

2/4

void CALLBACK ActionAfterDelayProc(void *lpParameter, BOOLEAN)

{

HANDLE *phTimer = static_cast<HANDLE *>(lpParameter);

Action();

DeleteTimerQueueTimer(NULL, *phTimer, NULL);

delete phTimer;

}

BOOL PerformActionAfterDelay()

{

BOOL fSuccess = FALSE;

HANDLE *phTimer = new(std::nothrow) HANDLE;

if (phTimer != NULL) {

 if (CreateTimerQueueTimer(

 phTimer, NULL, ActionAfterDelayProc, phTimer,

 ACTIONDELAY, 0, WT_EXECUTEONLYONCE)) {

 fSuccess = TRUE;

 }

}
if (!fSuccess) {

 delete phTimer;

}
return fSuccess;

}

The timer queue timer technique is complicated by the
fact that we want the timer to self-

cancel, so it needs
to know its handle, but we don’t know the handle until
after we’ve

scheduled it, at which point it’s too late
to pass the handle as a parameter.
In other words,

we’d ideally like to create the timer,
and then once we get the handle, go back in time and

pass the handle as the parameter to
 CreateTimerQueueTimer .
Since the Microsoft

Research people haven’t yet
perfected their time machine, we solve this problem
by passing

the handle by address:
The
 CreateTimerQueueTimer
function fills the address with the

timer,
so that the callback function can read it back out.

In practice, this additional work is no additional work at all,
because you’re already passing

some data to the callback
function, probably an object or at least a pointer to a structure.
You

can stash the timer handle inside that object.
In our case, our object is just the handle itself.

If you prefer to be more explicit:

3/4

struct ACTIONINFO

{

HANDLE hTimer;

};
void CALLBACK ActionAfterDelayProc(void *lpParameter, BOOLEAN)

{

ACTIONINFO *pinfo = static_cast<ACTIONINFO *>(lpParameter);

Action();

DeleteTimerQueueTimer(NULL, pinfo->hTimer, NULL);

delete pinfo;

}

BOOL PerformActionAfterDelay()

{

BOOL fSuccess = FALSE;

ACTIONINFO *pinfo = new(std::nothrow) ACTIONINFO;

if (pinfo != NULL) {

 if (CreateTimerQueueTimer(

 &pinfo->hTimer, NULL, ActionAfterDelayProc, pinfo,

 ACTIONDELAY, 0, WT_EXECUTEONLYONCE)) {

 fSuccess = TRUE;

 }

}
if (!fSuccess) {

 delete pinfo;

}
return fSuccess;

}

The threadpool functions were redesigned in Windows Vista
to allow for greater reliability

and predictability.
For example, the operations of creating a timer and setting it
into action

are separated so that you can preallocate your
timer objects (inactive) at a convenient time.

Setting the timer itself cannot fail (assuming valid parameters).
This makes it easier to

handle error conditions since all the
errors happen when you preallocate the timers,
and you

can deal with the problem up front,
rather than proceeding ahead for a while
and then

realizing,
“Oops, I wanted to set that timer but I couldn’t.
Now how do I report the error and

unwind all the work that I’ve done so far?”
(There are other new features, like cleanup

groups that let
you clean up multiple objects with a single call,
and being able to associate an

execution environment with a library,
so that the DLL is not unloaded while it still has active

thread pool
objects.)

The result is, however, a bit more typing, since there are now two steps,
creating and setting.

On the other hand,
the new threadpool callback is explicitly passed the
 PTP_TIMER , so we

don’t have to play any
weird time-travel games to get the handle to the callback,
like we did

with
 CreateTimerQueueTimer .

4/4

void CALLBACK ActionAfterDelayProc(

 PTP_CALLBACK_INSTANCE, PVOID, PTP_TIMER Timer)

{

Action();

CloseThreadpoolTimer(Timer);

}

BOOL PerformActionAfterDelay()

{

BOOL fSuccess = FALSE;

PTP_TIMER Timer = CreateThreadpoolTimer(

 ActionAfterDelayProc, NULL, NULL);

if (Timer) {

 LONGLONG llDelay = -ACTIONDELAY * 10000LL;

 FILETIME ftDueTime = { (DWORD)llDelay, (DWORD)(llDelay >> 32) };

 SetThreadpoolTimer(Timer, &ftDueTime, 0, 0); // never fails!

 fSuccess = TRUE;

}
return fSuccess;

}

Anyway, that’s a bit of a whirlwind tour of some of the ways
of arranging for code to run after

a delay.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

