
1/2

November 26, 2012

How does the window manager decide where to place a
newly-created window?

devblogs.microsoft.com/oldnewthing/20121126-00

Raymond Chen

Amit wonders how Windows chooses where to place a newly-opened window on a multiple-

monitor system and gives as an example an application whose monitor choice appears

inconsistent.
The easy part is if the application specifies where it wants the window to be. In

that case, the window is placed at the requested location. How the application chooses those

coordinates is up to the application.
On the other hand, if the application passes CW_USE‐

DEFAULT , this means that the application is saying, “I have no opinion where the window

should go. Please pick a place for me.”
If this is the first top-level window created by the

application with CW_USEDEFAULT as its position, and the STARTF_USEPOSITION flag is set

in the STARTUPINFO , then use the position provided in the dwX and dwY members.

Officially, that’s all you’re going to see in the documentation. Past this point is all

implementation detail. I’m providing it here to satisfy your curiosity, but please don’t write

code that relies on it. (This is, I realize, a meaningless request, but I must go through the

motions of making it anyway.)
Okay, now let’s dive into the various levels of automatic

window positioning the window manager performs. Remember, these algorithms are not

contractual and can change at any time. (In fact, they have changed in the past.) Just to make

it harder to rely on this algorithm, I will not tell you which operating system implements the

algorithm described below.
From now on, assume that the application has specified CW_USE‐

DEFAULT as its position. Also assume that the window is a top-level window.
First we have to

choose a monitor.

If the window was created with an owner, then the window goes onto the monitor

associated with the owner window. This tends to keep related windows together on the

same monitor.

Else, if the process was created by the ShellExecuteEx function, and the

SEE_MASK_HMONITOR flag was passed in the SHELLEXECUTEINFO structure, then the

window goes onto the specified monitor.

Else, the window goes on the primary monitor.

Next, we have to choose a location on that monitor.

https://devblogs.microsoft.com/oldnewthing/20121126-00/?p=5993
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10040372

2/2

If this is the first time we need to choose a default location on a monitor, or if the

previous default location is too close to the bottom right corner of the monitor, then act

as if the previous default location for the monitor was the upper left corner of the

monitor.

The next default location on a monitor is offset from the previous default location,

diagonally down and to the right.

The vertical offset is chosen so that the top edge of the new window lines up

against the bottom of the previous window’s caption.

The horizontal offset is chosen so that the left edge of the new window lines up

against the right edge of the caption icon of the previous window.

The effect of this algorithm is that if you open a bunch of default-positioned windows on a

monitor, they line up in a pretty cascade marching down and to the right, until the cascade

goes too far, and then they return to the upper left and resume cascading.
Finally, after

choosing a monitor and a location on the monitor, the selected location is adjusted (if

possible) so that the window does not span monitors.

And that’s it, the default-window-positioning algorithm, as it existed in an unspecified

version of Windows. Remember, this algorithm has been tweaked in the past, and it will get

tweaked more in the future, so don’t rely on it.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/06/24/10178386.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

