
1/3

September 26, 2012

Sabotaging yourself: Closing a handle and then using it
devblogs.microsoft.com/oldnewthing/20120926-00

Raymond Chen

A customer reported a problem with the WaitForSingleObject
function:

I have a DLL with an
 Initialize() function and an
 Uninitialize() function.
The
code goes like this:

HANDLE FooMutex;

BOOL Initialize()

{

... unrelated initialization stuff ...

FooMutex = CreateMutex(NULL, FALSE, "FooMutex");

... error checking removed ...

return TRUE;

}

BOOL Uninitialize()

{

// fail if never initialized

if (FooMutex == NULL) return FALSE;

// fail if already uninitialized

if (WaitForSingleObject(FooMutex, INFINITE) == WAIT_FAILED)

 return FALSE;

... unrelated cleanup stuff ...

ReleaseMutex(FooMutex);

CloseHandle(FooMutex);

return TRUE;

}

Under certain conditions, the Initialize() function
is called twice, and the
Uninitialize() function
is correspondingly called twice.
Under these conditions, if I run

the code on a single-processor system
with hyperthreading disabled, then everything works
fine.
But if I enable hypethreading, then the second call to
 Uninitialize() hangs in the
WaitForSingleObject
call.
(As you can see, it’s waiting for a mutex handle which was

closed
by the previous call to Uninitialize() .)

Why does this happen only on a hyperthreaded machine?
Shouldn’t the
WaitForSingleObject return
 WAIT_FAILED because the parameter is invalid?
Is this a

bug in Windows hyperthreading support?

https://devblogs.microsoft.com/oldnewthing/20120926-00/?p=6493

2/3

Remember,
don’t immediately jump to the conspiracy theory:¹
Hyperthreading may be the

trigger for your problem, but it’s
probably not a bug in hyperthreading.

While it’s true that WaitForSingleObject returns
 WAIT_FAILED when given an invalid

parameter,
handle recycling means that any invalid handle can suddenly
become valid again

(but refer to an unrelated object).

The problem with hyperthreading will probably recur if you
run the scenario on a

multiprocessor machine.
Hyperthreading (and multi-core processing) means that two

threads can be executing simultaneously, which means that
the opportunity for race

conditions grows significantly.

What’s probably happening is that between the two calls to
 Uninitialize() ,
another

thread called CreateThread or
 CreateEvent or some other function which creates
a

waitable kernel object.
That new kernel object was coincidentally assigned the same

numerical handle value that was previously assigned to your
 FooMutex .
(This is perfectly

legitimate since you closed the handle,
thereby making it available for re-use.)
Now when you

call WaitForSingleObject(FooMutex) ,
you are actually waiting on that other object.
And

since that other object is not signaled, the wait call waits.

Okay, so how do we fix the problem?
The simple fix is to null out FooMutex after closing
the

handle.
This assumes however that your DLL design imposes the restriction
on clients that

all calls to Initialize() and
 Uninitialize() take place on the same thread,
and that

the DLL is uninitialized on the first call
to Uninitialize() .

Oh, and you may have noticed another bug:
When Initialize() is called the second time,

the DLL reinitializes itself.
In particular, it re-creates the mutex and overwrites the
handle

from the previous call to Initialize() .
Now you have a handle leak.
I suspect that’s why

the call to CreateMutex
explicitly passes "FooMutex" as the mutex name.
The previous

version passed NULL , creating an
anonymous mutex, but then the author discovered that

the mutex
“stopped working” because some code was using the old handle
(using the mutex

created by the first call to Initialize())
and some code was using the new handle
(using

the mutex created by the second call to Initialize()).
Using a named mutex “fixes” the

problem by forcing the two calls to
 Initialize() to create a handle to the same underlying

object.

To fix the handle leak, you can just stick a
 if (FooMutex != NULL) return TRUE; at the

top.
The DLL has already been initialized; don’t need to initialize it again.

The design as I inferred it is somewhat unusual, however.
Usually, when a component

exposes Initialize() and
 Uninitialize() and supports multiple initialization,
the

convention is that the DLL initialization remains valid
until the last call to

http://blogs.msdn.com/b/oldnewthing/archive/2011/02/10/10127054.aspx

3/3

Uninitialize() , not the first one.
If that was the design intention of this DLL, then a

different fix is
called for,
one which I leave as an exercise,
since we’ve drifted pretty far from

the original question.

¹The authors of
The Pragmatic Programmer call this principle
‘select’ isn’t broken.

Raymond Chen

Follow

http://pragprog.com/the-pragmatic-programmer/extracts/tips
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

