
1/2

September 17, 2012

How do you deal with an input stream that may or may
not contain Unicode data?

devblogs.microsoft.com/oldnewthing/20120917-00

Raymond Chen

Dewi Morgan reinterpreted a question from a Suggestion Box of times past as “How do you

deal with an input stream that may or may not contain Unicode data?” A related question

from Dave wondered how applications that use CP_ACP to store data could ensure that the

data is interpreted in the same code page by the recipient. “If I send a .txt file to a person in

China, do they just go through code pages until it seems to display correctly?”
These

questions are additional manifestations of Keep your eye on the code page.
When you store

data, you need to have some sort of agreement (either explicit or implicit) with the code that

reads the data as to how the data should be interpreted. Are they four-byte sign-magnitude

integers stored in big-endian format? Are they two-byte ones-complement signed integers

stored in little-endian format? Or maybe they are IEEE floating-point data stored in 80-bit

format. If there is no agreement between the two parties, then confusion will ensue.
That

your data consists of text does not exempt you from this requirement. Is the text encoded in

UTF-16LE? Or maybe it’s UTF-8. Or perhaps it’s in some other 8-bit character set. If the two

sides don’t agree, then there will be confusion.
In the case of files encoded in CP_ACP , you

have a problem if the source and destination have different values for CP_ACP . That text file

you generate on a US-English system (where CP_ACP  is 1252) may not make sense when

decoded on a Chinese-Simplified system (where CP_ACP  is 936). It so happens that all

Windows 8-bit code pages agree on code points 0 through 127, so if you restrict yourself to

that set, you are safe. The Windows shell team was not so careful, and they slipped some

characters into a header file which are illegal when decoded in code page 932 (the CP_ACP

used in Japan). The systems in Japan do not cycle through all the code pages looking for one

that decodes without errors; they just use their local value of CP_ACP , and if the file makes

no sense, then I guess it makes no sense.
If you are in the unfortunate situation of having to

consume data where the encoding is unspecified, you will find yourself forced to guess. And if

you guess wrong, the result can be embarrassing.
Bonus chatter: I remember one case

where a customer asked, “We need to convert a string of chars into a string of wchars. What

code page should we pass to the MultiByteToWideChar  function?”
I replied, “What code

page is your char string in?”

https://devblogs.microsoft.com/oldnewthing/20120917-00/?p=6583
http://blogs.msdn.com/b/oldnewthing/archive/2007/10/22/5586861.aspx#5612543
http://blogs.msdn.com/b/oldnewthing/archive/2009/01/15/9319761.aspx#9321243
http://blogs.msdn.com/b/oldnewthing/archive/2006/03/01/541266.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/03/08/389527.aspx
http://blogs.msdn.com/michkap/archive/2009/09/11/9894019.aspx
http://en.wikipedia.org/wiki/Mojibake
http://blogs.msdn.com/b/oldnewthing/archive/2007/04/17/2158334.aspx
http://en.wikipedia.org/wiki/Bush_hid_the_facts


2/2

There was no response. I guess they realized that once they answered that question, they had

their answer.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

