
1/3

September 13, 2012

WM_CTLCOLOR vs GetFileVersionInfoSize: Just because
somebody else screwed up doesn't mean you're allowed
to screw up too

devblogs.microsoft.com/oldnewthing/20120913-00

Raymond Chen

In a discussion of
the now-vestigial lpdwHandle parameter
to the GetFileVersionInfoSize

function,
Neil asks,
“Weren’t there sufficient API differences
(e.g. WM_CTLCOLOR) between

Win16 and Win32 to justify
changing the definitions to eliminate the superfluous handle?”

The goal of Win32 was to provide as much backward compatibility with
existing 16-bit source

code as can be practically achieved.
Not all of the changes were successful in achieving this

goal,
but just because one person fails to meet that goal doesn’t mean
that everybody else

should abandon the goal, too.

The Win32 porting tool PORTTOOL.EXE scanned for things
which had changed and inserted

comments saying things like

“No Win32 API equivalent” — these were for the 25 functions
which were very tightly

coupled to the 16-bit environment,
like selector management functions.

“Replaced by OtherFunction” — these were used for the 38
functions which no longer

existed in Win32, but for which
corresponding function did exist, but the parameters

were
different so a simple search-and-replace was not sufficient.

“Replaced by XYZ system” — these were for functions that
used an interface that was

completely redesigned:
the 16 old sound functions that buzzed your tinny PC speaker

being replaced by the new multimedia system,
and the 8 profiling functions.

“This function is now obsolete” — these were for the 16 functions
that no longer had

any effect, like
 GlobalLRUNewest and
 LimitEMSPages .

“wParam/lParam repacking” — these were for the 21 messages that
packed their

parameters differently.

Special remarks for eight functions whose parameters changed
meaning and therefore

required special attention.

A special comment just for window procedures.

https://devblogs.microsoft.com/oldnewthing/20120913-00/?p=6613
http://blogs.msdn.com/b/oldnewthing/archive/2007/07/31/4138786.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2007/07/31/4138786.aspx#4153782

2/3

If you add it up, you’ll see that this makes for a total of 117
breaking changes.
And a lot of

these changes were in rarely-used parts of Windows
like the selector-management stuff, the

PC speaker stuff,
the profiling stuff, and the serial port functions.
The number of breaking

changes that affected typical
developers was more like a few dozen.

Not bad for a total rewrite of an operating system.

If somebody said,
“Hey, you should port to this new operating system.
Here’s a list of 117

things you need to change,”
you’re far more likely to respond,
“Okay, I guess I can do that,”

than if somebody said,
“Here’s a list of 3,000 things you need to change.”
Especially if some

of the changes were
not absolutely necessary, but were added merely to annoy you.
(I would

argue that the handling of many GDI functions
like MoveTo
fell into the added merely to

annoy you category,
but at least
a simple macro
smooths over most of the problems.)

One of the messages that required special treatment was
 WM_COMMAND .
In 16-bit Windows,

the parameters were as follows:

WPARAM int nCode

LPARAM HWND hwndCtl (low word)

int id (high word)

Observe that this message violated the rule that
handle-sized things go in the WPARAM.
As a

result, this parameter packing method could not be maintained
in Win32.
If it had been

packed as

WPARAM HWND hwndCtl

LPARAM int id (low word)

int nCode (high word)

then the message would have ported cleanly to Win32.
But Win32 handles are 32-bit values,

so there’s no room for both an HWND
and an integer in a 32-bit LPARAM ;
as a result, the

message had to be repacked in Win32.

The WM_CTLCOLOR message was an extra special
case of a message that required changes,

because it was the only one
that changed in a way that required more than just mechanical

twiddling of the way the parameters were packaged.
Instead,
it got split out into several

messages, one for each type of
control.

In 16-bit Windows, the
parameters to the WM_CTLCOLOR message were
as follows:

http://blogs.msdn.com/b/oldnewthing/archive/2011/12/07/10244820.aspx#10245410
http://blogs.msdn.com/b/oldnewthing/archive/2009/07/20/9840597.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/11/25/55850.aspx

3/3

WPARAM HDC hdc

LPARAM HWND hwndCtl (low word)

int type (high word)

The problem with this message was that it had two handle-sized
values.
One of them went

into the WPARAM ,
like all good handle-sized parameters,
but the second one was forced to

share a bunk bed with the type code
in the LPARAM .
This arrangement didn’t survive in

Win32 because handles expanded
to 32-bit values,
but unlike
 WM_COMMAND ,
there was

nowhere to put the now-ousted type ,
since both the WPARAM and LPARAM were full
with

the two handles.
Solution:
Encode the type code in the message number.
The WM_CTLCOLOR

message became a collection
of messages, all related by the formula

WM_CTLCOLORtype = WM_CTLCOLORMSGBOX + CTLCOLOR_type

The WM_CTLCOLOR message was the bad boy
in the compatibility contest,
falling pretty badly

on its face.
(How many metaphors can I mix in one article?)

But just because there’s somebody who screwed up doesn’t mean
that you’re allowed to screw

up too.
If there was a parameter that didn’t do anything any more,
just declare it a reserved

parameter. That way, you didn’t have to go
onto the “wall of shame” of functions that didn’t

port cleanly.
The
GetFileVersionInfoSize function
kept its vestigial lpdwHandle

parameter,
WinMain kept its vestigial hPrevInstance
parameter,
and
CoInitialize kept its

vestigial lpReserved
parameter.

This also explains why significant effort was made in the
32-bit to 64-bit transition not to

make breaking changes
just because you can.
As much as practical, porting issues were

designed in such a way
that they could be detected at compile time.
Introducing gratuitous

changes in behavior makes the porting
process harder than it needs to be.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2007/07/31/4138786.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2004/06/15/156022.aspx
http://blogs.msdn.com/b/larryosterman/archive/2007/02/08/why-was-the-ability-to-specify-an-allocator-during-coinitialize-removed-from-the-system.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

