
1/3

August 24, 2012

Dumping a hash table with external chaining from the
debugger

devblogs.microsoft.com/oldnewthing/20120824-00

Raymond Chen

I was doing some crash dump debugging, as I am often called upon to do,
and one of the data

structure I had to grovel through was something
that operated basically like an atom table, so

that’s what I’ll call
it.
Like an atom table,
it manages a collection of strings.
You can add a

string to the table (getting a unique value back,
which we will call an atom),
and later you can

hand it the atom and it will give you the string back.
It looked something like this:

struct ENTRY

{

 ENTRY *next;

 UINT atom;

 PCWSTR value;

};
#define ATOMTABLESIZE 19

struct ATOMTABLE

{

 ENTRY *buckets[ATOMTABLESIZE];

};

(It didn’t actually look like this; I’ve reduced it to the smallest
example that still illustrates my

point.)

As part of my debugging, I had an atom and needed to look it up
in the table.
A program

would do this by simply calling the
“here is an atom, please give me the string” function,
but

since this was a crash dump,
there’s nothing around to execute anything.
(Not that having a

live machine would’ve made things much easier,
because this was a kernel-mode crash,
so

you don’t get any of this edit-and-continue froofy stuff.
This is real debugging™.)

But even though the crashed system can’t execute anything,
the debugger can execute stuff,

and the debugger engine used by kd
comes with its own mini-programming language.

Here’s how I dumped the atom table:

https://devblogs.microsoft.com/oldnewthing/20120824-00/?p=6773

2/3

// note: this was entered all on one line

// broken into two lines for readability

0: kd> .for (r $t0=0; @$t0 < 0n19; r $t0=@$t0+1)

 { dl poi (fffff8a0`06b69930+@$t0*8) 99 2 }

fffff8a0`06ad3b90 fffff8a0`037a3fc0 fffff8a0`0000000c \

fffff8a0`037a3fc0 fffff8a0`037a4ae0 00000000`00000025 | $t0=0

fffff8a0`037a4ae0 fffff8a0`02257580 00000000`00000036 |

fffff8a0`02257580 00000000`00000000 00000000`00000056 /

fffff8a0`06ad3b30 fffff8a0`06ad3ad0 a9e8a9d8`0000000d \

fffff8a0`06ad3ad0 fffff8a0`037a4700 000007fc`0000000e |

fffff8a0`037a4700 fffff8a0`01f96fb0 00000000`0000003f | $t0=1

fffff8a0`01f96fb0 fffff8a0`06cfa5d0 fffff8a0`00000044 |

fffff8a0`06cfa5d0 00000000`00000000 00181000`00000060 /

fffff8a0`033e7a70 fffff8a0`037a4770 00000020`00000023 \

fffff8a0`037a4770 fffff8a0`023b52f0 00000000`0000003e | $t0=2

fffff8a0`023b52f0 fffff8a0`03b6e020 006f0063`00000059 |

fffff8a0`03b6e020 00000000`00000000 00000000`00000075 /

fffff8a0`037a0670 fffff8a0`02b08870 fffff8a0`00000026 \ $t0=3

fffff8a0`03b9e390 00000000`00000000 00240000`00000071 /

...

Let’s take that weirdo command apart one piece at a time.

The overall command is

.for (a; b; c) { d }

This operates the same as the C programming language.
(Sorry, Delphi programmers,
for yet

another C-centric example.)
In our case,
we use the $t0 pseudo-register as our loop control.

r $t0=0
— this sets $t0 to zero

@$t0 < 0n19
— this stops once $t0 reaches 19.

r $t0=@$t0+1
— this increments $t0 .

Note that here as well as in the loop body, I prefix the register
name with the @ character

when I want to obtain its value,
in order to force it to be interpreted as a register.
(Otherwise,

the debugger will look for a symbol called $t0 .)

The command being executed at each iteration is
 { dl poi (fffff8a0`06b69930+@$t0*8)

99 2 } .
Let’s break this down, too:

dl
— this command dumps a singly-linked list.

poi (fffff8a0`06b69930+@$t0*8)
— this is the head of the linked list.
In this

example,
 0xfffff8a0`06b69930
is the address of the buckets array,
so we add the

loop counter times the size of a pointer (8, in
this case) to get the address of the

$t0 ‘th entry,
and then dereference it (poi) to get the address
of the head of the

linked list.

http://blogs.msdn.com/b/oldnewthing/archive/2011/05/23/10167156.aspx#10167462

3/3

99
— This is the maximum length of the linked list.
I picked an arbitrary large-enough

number.
I like using 9’s because it carries the most value per keypress.
Other people

like to use nice round numbers like 1000 ,
but 999 saves you a whole keypress and is

just one less.
(On the other hand, I don’t use fff because that runs
the risk of being

misinterpreted as a symbol.)

2
—
This is the number of pointer-sized objects to dump at the start
of each node.
For

32-bit code, I use 4, whereas for 64-bit code, I use 2.
Why those values?
Because those

are the maximum number of pointer-sized objects that
the debugger will print on one

line.

Okay, so now I have that linked list dump.
The value I’m looking for is the atom whose

value
is 0x3F , so I skim down the last column looking
for 0000003f , and hey there it is.

fffff8a0`037a4700 fffff8a0`01f96fb0 00000000`0000003f

Now I have my ENTRY , and I can dump it to see what
the corresponding value is.

0: kd> dt contoso!ENTRY fffff8a0`037a4700

 +0x000 next: 0xfffff8a0`01f96fb0

 +0x008 atom: 0x0000003f

 +0x010 value: 0xffff8a0`01f97e20 -> "foo"

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

