
1/2

August 3, 2012

FORFILES, for your fancier batch file enumeration needs
devblogs.microsoft.com/oldnewthing/20120803-00

Raymond Chen

Crack open open the champagne:
Batch File Week is finally over!

Variations on the
 for /f %%i in ('dir /b ...')
will let you repeat an operation on the

contents of a directory,
possibly even recursively if you add the /s option,
with some basic

attribute-level filtering if you add the
 /a or /a- flags.

For your fancy recursive file operations,
there’s a tool called
 FORFILES which iterates

through the contents of a
directory (recursively if requested),
executing a command on each

item it finds.
It also has additional filtering capability,
like selecting files based on their last-

modified time.
For example,
you could copy all files in the current directory which were

modified today:

forfiles /D +0 /c "cmd /c copy @file \\server\today"

Unfortuantely, the /D option is not as flexible
as one might like.
For example, while it can

pick files modified today,
it can’t pick files modified in the last week,
because the relative-

date-picker knows only how to pick
files modified on or before a date in the past
or
files

modified on or after a date in the future.
(Who the heck wants to operate on files modified in

the future?
Except perhaps the Microsoft Research folks who are working
on that time

machine.)

You can type FORFILES /? for more information on what
you can do (and by seeing what’s

omitted, what you can’t do).

If the command you want to execute is rather long,
you can offload it back into the batch file

being executed:

https://devblogs.microsoft.com/oldnewthing/20120803-00/?p=6953

2/2

@echo off

if "%1"=="/callback" goto callback

forfiles /D +0 /c "cmd /c call "%~f0" /callback @isdir @file @fsize"

goto :eof

:callback

rem %2 = @isdir

rem %3 = @file

rem %4 = @fsize

if %2==TRUE echo Skipping directory %3.&goto :eof

echo Copying file %3 to \\server\today (%4 bytes)

One gotcha here is that since each command runs in a sub-shell,
it can read environment

variables, but any modifications it makes
to environment variables will be lost since the

command is modifying
only its local environment variables.
A workaround for this is to use

FORFILES to select
the data to operate on,
but use FOR to actually perform the operation.

Since FOR runs inside the main command interpreter,
it can modify environment variables.

set TOTALSIZE=0

for /f %%i in ('forfiles /d +0 /c "cmd /c if @isdir==FALSE echo @fsize"') ^

do set /a TOTALSIZE=TOTALSIZE + %%i

Here, we use FORFILES to enumerate all the files
(not directories)
modified today
and print

their sizes.
We wrap this inside a FOR which reads the sizes
and adds them up.

If the operation you want to perform on each file is complex,
you can of course offload it into

a
subroutine call.

for /f %%i ^

in ('forfiles /d +0 /c "cmd /c if @isdir==FALSE echo @fsize"') ^

do call :subroutine %%i

I’m cheating here because I know that @fsize doesn’t
contain spaces.
If you are processing

file names, then you need to be more careful.

for /f "tokens=*" %%i ^

in ('forfiles /d +0 /c "cmd /c if @isdir==FALSE echo @fname"') ^

do call :subroutine %%i

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2008/08/06/8835317.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2012/08/02/10334559.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

