
1/3

June 19, 2012

It's not a good idea to give multiple controls on a dialog
box the same ID

devblogs.microsoft.com/oldnewthing/20120619-00

Raymond Chen

When you build a dialog, either from a template or by explicitly calling CreateWindow , one

of the pieces of information about each control is a child window identifier. And it’s probably

in your best interest to make sure two controls on the dialog don’t have the same ID number.

Of course, one consequence of giving two control the same ID number is that the GetDlg‐

Item function won’t know which one to return when you say, “Please give me control

number 100.” This naturally has a cascade effect on all the other functions which are built

atop the GetDlgItem function, such as SetDlgItemInt .
Another reason to avoid

duplication is that many notification messages include the control ID, and if you have a

duplicate, you won’t know which one generated the notification. Okay, this isn’t actually the

case, because the notification messages typically also include the window handle, so you can

use the window handle to distinguish between your two controls both with ID=100. Though

it means that you can’t use a simple switch statement any more.
(See sidebar for discussion

of when duplicate IDs are acceptable.)
Most of the time, you get away with the duplicate IDs

because you can use the window handle to distinguish them. But there is one notable case

where duplicate IDs cause problems: Identifying the default pushbutton on the dialog.
One of

the things that the dialog manager does when it builds a dialog box from a template is keep

an eye out for a button control with the BS_DEFPUSHBUTTON style. When it finds one, it

remembers the control ID so that it can restore it as the default pushbutton when focus is on

a non-pushbutton control. (When focus is on a pushbutton, then that button becomes the

default pushbutton.)
The dialog manager records the initial default pushbutton by sending

itself the DM_SETDEFID message, and the default handler merely records the value in a safe

place so it can return it when somebody sends the DM_GETDEFID message. You can send the

DM_SETDEFID message yourself if you want to change the default pushbutton, and that’s

where the trouble comes in.
The only parameter to the DM_SETDEFID message is the ID of

the dialog control you want to be the new default, so if your dialog box has two controls with

that ID, then you’ve created a bit of a problem. When the user hits the Enter key, the dialog

manager wants to fire a WM_COMMAND notification for the default button, but it sees two of

them and gets confused.
Actually, it doesn’t really get confused. It just picks one of them

arbitrarily and ignores the other one.
And then confusion sets in.
If the two buttons with

conflicting IDs do different things, then your code which receives the WM_COMMAND

https://devblogs.microsoft.com/oldnewthing/20120619-00/?p=7343
http://blogs.msdn.com/b/oldnewthing/archive/2004/06/17/158175.aspx
http://msdn.microsoft.com/en-us/library/ms645413(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms645406(VS.85).aspx
http://support.microsoft.com/kb/140587

2/3

notification may end up seeing the notification coming from the wrong control. For example,

suppose you inadvisedly assign ID number 100 to both the Reformat and Scan buttons (and

out of an abundance of caution, set Scan as the default pushbutton). When the user hits

Enter, the dialog manager sends a WM_GETDEFID message to say, “Hey, what’s the default

pushbutton?” The message returns 100, and now the dialog manager is stuck saying to itself,

“Um, there are two 100’s. Eeny, meeny, miny, moe. Okay, it’s the Reformat button.” Boom,

hard drive reformatted.
From the same dialog template, suppose you realize, “Oh, I don’t

want to let the user reformat the hard drive until they’ve entered a volume label,” so you

disable the Reformat button if the volume label field is blank. The user hits Enter, and

remember, you set Scan as the default button. But since Reformat and Scan have the same

control ID, the dialog manager once again plays eeny-meeny-miney-moe, and say it picks the

Reformat button. But it also sees that the Reformat button is disabled, so it just beeps.
And

then your user wonders why, when they hit Enter and the Scan button is the default

pushbutton, it doesn’t scan but instead just beeps.
Okay, all this discussion seems pretty

obvious, doesn’t it, but as we dig deeper into the dialog manager, you’ll see how the principle

of “Don’t create a dialog box with conflicting dialog control IDs” has perhaps unexpected

consequences.
Sidebar: If the duplications are all among controls that do not raise

notifications and which you do not need to identify programmatically, then you’re not going

to run into much trouble at all. By convention, the “control ID for controls where I don’t care

about the ID” is −1, although you can use any number you like; the window manager doesn’t

care, as long as it doesn’t collide with the ID of a control that you do care about.
Note that

some resource management tools (such as translation toolkits, or interactive dialog editors)

assume that there are no duplicate IDs aside from the special don’t-care value −1, so if you’re

going to use duplicate IDs because you don’t care, you’d be well-served to stick to the −1

convention.
Bonus chatter: Why doesn’t DM_SETDEFID take a window handle instead of a

control ID? That would solve the problem of multiple controls with the same ID, since you

now have the window handle, which identifies the control uniquely.
Yeah, it could’ve done

that. Though it would also have created problems if the default pushbutton is destroyed, and

that happens more often than you think.
Remember back in the early 16-bit days, we didn’t

have parameter validation, so a dangling window handle meant that you crashed when you

tried to use it. (Or worse, the window handle could have been reused for another totally

unrelated window! Window handle reuse was much more common in 16-bit Windows.)

Mapping the window handle back to an ID and then converting the ID to a window on

demand meant that you never keep a window handle around, which means that you never

have to worry about the handle going bad.
Making the DM_SETDEFID message handle-based

would also make it harder for somebody to pull the “Create two controls with the same ID but

hide one of them at runtime” trick described above, because they would also have to

remember to send a hypothetical DM_SETDEFHWND message whenever they pulled the

switcheroo.

3/3

And besides, the only people this design change helps out are people who put multiple visible

controls on a dialog box with the same ID. You don’t optimize for the case where somebody is

mis-using your system.

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2007/07/19/3945339.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

