What is the historical reason for MulDiv(1, -0x80000000,
-0x80000000) returning 2?

=. devblogs.microsoft.com/oldnewthing/20120514-00

May 14, 2012

-
Raymond Chen

Commenter rs asks, “Why does Windows (historically) return 2 for Mulbiv (1,
-0x80000000, -0x80000000) while Wine returns zero?”

The MulDiv function multiplies the first two parameters and divides by the third.
Therefore, the mathematically correct answer for MulDiv(1, -0x80000000,
-0x80000000) is 1, because a x b + b = a for all nonzero b.

So both Windows and Wine get it wrong. I don’t know why Wine gets it wrong, but I dug
through the archives to figure out what happened to Windows.

First, some background. What’s the point of the MulDiv function anyway?

Back in the days of 16-bit Windows, floating point was very expensive. Most people did not
have math coprocessors, so floating point was performed via software emulation. And the
software emulation was slow. First, you issued a floating point operation on the assumption
that you had a float point coprocessor. If you didn’t, then a coprocessor not available
exception was raised. This exception handler had a lot of work to do.

It decoded the instruction that caused the exception and then emulated the operation. For
example, if the bytes at the point of the exception were d9 45 08 , the exception handler
would have to figure out that the instruction was f1d dword ptr ds:[di][8] .Itthen had
to simulate the operation of that instruction. In this case, it would retrieve the caller’s di
register, add 8 to that value, load four bytes from that address (relative to the caller’s ds
register), expand them from 32-bit floating point to 80-bit floating point, and push them
onto a pretend floating point stack. Then it advanced the instruction pointer three bytes and
resumed execution.

This took an instruction that with a coprocessor would take around 40 cycles (already slow)
and ballooned its total execution time to a few hundred, probably thousand cycles. (I didn’t
bother counting. Those who are offended by this horrific laziness on my part can apply for a
refund.)

1/3


https://devblogs.microsoft.com/oldnewthing/20120514-00/?p=7633
http://blogs.msdn.com/b/oldnewthing/archive/2010/07/20/10040074.aspx#10040424

It was in this sort of floating point-hostile environment that Windows was originally
developed. As a result, Windows has historically avoided using floating point and preferred
to use integers. And one of the things you often have to do with integers is scale them by
some ratio. For example, a horizontal dialog unit is ¥4 of the average character width, and a
vertical dialog unit is 1/8 of the average character height. If you have a value of, say, 15
horizontal dlu, the corresponding number of pixels is 15 x average character width + 4. This
multiply-then-divide operation is quite common, and that’s the model that the MulDiv
function is designed to help out with.

In particular, MulDiv took care of three things that a simple a x b + ¢ didn’t. (And
remember, we’re in 16-bit Windows, so a, b and c are all 16-bit signed values.)

e The intermediate product a x b was computed as a 32-bit value, thereby avoiding
overflow.

e The result was rounded to the nearest integer instead of truncated toward zero

e Ifc = o0 orif the result did not fit in a signed 16-bit integer, it returned INT_MAX or
INT _MIN as appropriate.

The MulDiv function was written in assembly language, as was most of GDI at the time. Oh
right, the MulDiv function was exported by GDI in 16-bit Windows. Why? Probably because
they were the people who needed the function first, so they ended up writing it.

Anyway, after I studied the assembly language for the function, I found the bug. A shr
instruction was accidentally coded as sar . The problem manifests itself only for the
denominator —0x8000, because that’s the only one whose absolute value has the high bit set.

The purpose of the sar instruction was to divide the denominator by two, so it can get the
appropriate rounding behavior when there is a remainder. Reverse-compiling back into C,
the function goes like this:

int16 MulDiv(int16 a, int16 b, intl6 c)
{

int16 sign = a N b A c¢; // sign of result
// make everything positive; we will apply sign at the end

if (a < 0) a = -a;
if (b <0) b = -b;
if (c <0) ¢ = -c;

// add half the denominator to get rounding behavior
uint32 prod = UInt16x16To32(a, b) + ¢ / 2;

if (HIWORD(prod) >= c) goto overflow;

int16 result = UInt32Div16Tol6(prod, c);

if (result < Q@) goto overflow;

if (sign < 0) result = -result;
return result;
overflow:

return sign < © ? INT_MIN : INT_MAX;
}

2/3


http://blogs.msdn.com/b/ericlippert/archive/2011/01/24/spot-the-defect-bad-comparisons-part-two.aspx

Given that I've already told you where the bug is, it should be pretty easy to spot in the code
above.

Anyway, when this assembly language function was ported to Win32, it was ported as, well,
an assembly language function. And the port was so successful, it even preserved (probably
by accident) the sign extension bug.

Mind you, it’s a bug with amazing seniority.

Raymond Chen

Follow

3/3


https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

