
1/3

May 4, 2012

How does the MultiByteToWideChar function treat invalid
characters?

devblogs.microsoft.com/oldnewthing/20120504-00

Raymond Chen

The MB_ERR_INVALID_CHARS flag
controls how the
 MultiByteToWideChar
function treats

invalid characters.
Some people claim that the following sentences in the documentation
are

contradictory:

“Starting with Windows Vista, the function does not drop
illegal code points if the

application does not set the flag.”

“Windows XP: If this flag is not set,
the function silently drops illegal code points.”

“The function fails if
 MB_ERR_INVALID_CHARS is set
and an invalid character is

encountered in the source string.”

Actually, the three sentences are talking about different cases.
The first two talk about what

happens if you omit the flag;
the third talks about what happens if you include the flag.

Since people seem to like tables, here’s a description of
the MB_ERR_INVALID_CHARS flag
in

tabular form:

MB_ERR_INVALID_CHARS set? Operating system Treatment of invalid character

Yes Any Function fails

No XP and earlier Character is dropped

Vista and later Character is not dropped

Here’s a sample program that illustrates the possibilities:

https://devblogs.microsoft.com/oldnewthing/20120504-00/?p=7703

2/3

#include <windows.h>

#include <ole2.h>

#include <windowsx.h>

#include <commctrl.h>

#include <strsafe.h>

#include <uxtheme.h>

void MB2WCTest(DWORD flags)

{

WCHAR szOut[256];

int cch = MultiByteToWideChar(CP_UTF8, flags,

 "\xC0\x41\x42", 3, szOut, 256);

printf("Called with flags %d\n", flags);

printf("Return value is %d\n", cch);

for (int i = 0; i < cch; i++) {

 printf("value[%d] = %d\n", i, szOut[i]);

}
printf("-----\n");

}

int __cdecl main(int argc, char **argv)

{

MB2WCTest(0);

MB2WCTest(MB_ERR_INVALID_CHARS);

return 0;

}

If you run this on Windows XP, you get

Called with flags 0

Return value is 2

Value[0] = 65

Value[1] = 66

Called with flags 8

Return value is 0

This demonstrates that passing the
 MB_ERR_INVALID_CHARS flag
causes the function to fail,

and omitting it causes
the invalid character \xC0 to be dropped.

If you run this on Windows Vista, you get

Called with flags 0

Return value is 3

Value[0] = 65533

Value[1] = 65

Value[2] = 66

Called with flags 8

Return value is 0

3/3

This demonstrates again that passing the
 MB_ERR_INVALID_CHARS flag
causes the function

to fail,
but this time, if you omit the flag,
the invalid character \xC0 is converted to U+FFFD,

which is
REPLACEMENT CHARACTER.
(Note that it does not appear to be documented

precisely
what happens to invalid characters, aside from the fact
that they are not dropped.

Perhaps code pages other than CP_UTF8 convert
them to some other default character.)

Raymond Chen

Follow

http://en.wikipedia.org/wiki/Specials%20(Unicode%20block)#Replacement_character
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

