
1/3

April 5, 2012

You can use an OVERLAPPED structure with
synchronous I/O, too

devblogs.microsoft.com/oldnewthing/20120405-00

Raymond Chen

Even if you didn’t open a file with
 FILE_FLAG_OVERLAPPED ,
you can still use the

OVERLAPPED structure
when you issue reads and writes.
Mind you,
the I/O will still

complete synchronously,
but you can take advantage of the other stuff
that OVERLAPPED has

to offer.

Specifically, you can take advantage of the
 Offset and OffsetHigh members
to issue the

I/O against a file location different from
the current file pointer.
(This is a file pointer in the

sense of
 SetFilePointer
and not in the sense of the C runtime FILE* .)
If your program

does a lot of reads and writes to random locations
in a file, using the synchronous

OVERLAPPED
structure saves you a call to
 SetFilePointer at each I/O.

Let’s illustrate this by writing some code to walk through
a file format that contains a lot of

offsets to other
parts of the file:
The ICO file format.
First, the old-fashioned way:

https://devblogs.microsoft.com/oldnewthing/20120405-00/?p=7923
http://blogs.msdn.com/b/oldnewthing/archive/2010/10/18/10077133.aspx

2/3

#define UNICODE

#define _UNICODE

#include <windows.h>

#include <pshpack1.h>

struct ICONDIRHEADER {

 WORD idReserved;

 WORD idType;

 WORD idCount;

};
struct ICONDIRENTRY {

 BYTE bWidth;

 BYTE bHeight;

 BYTE bColorCount;

 BYTE bReserved;

 WORD wPlanes;

 WORD wBitCount;

 DWORD dwBytesInRes;

 DWORD dwImageOffset;

};
#include <poppack.h>

BOOL ReadBufferAt(__in HANDLE hFile,

 __out_bcount(cbBuffer) void *pvBuffer,

 DWORD cbBuffer,

 DWORD64 offset)

{

LARGE_INTEGER li;

DWORD cbRead;

li.QuadPart = offset;

return SetFilePointerEx(hFile, li, nullptr, FILE_BEGIN) &&

 ReadFile(hFile, pvBuffer, cbBuffer, &cbRead, nullptr) &&

 cbBuffer == cbRead;

}

int __cdecl wmain(int argc, wchar_t **argv)

{

HANDLE hFile = CreateFile(argv[1], GENERIC_READ,

 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,

 nullptr, OPEN_EXISTING, 0, nullptr);

if (hFile != INVALID_HANDLE_VALUE) {

 ICONDIRHEADER hdr;

 if (ReadBufferAt(hFile, &hdr, sizeof(hdr), 0) &&

 hdr.idReserved == 0 && hdr.idType == 1) {

 for (UINT uiIcon = 0; uiIcon < hdr.idCount; uiIcon++) {

 ICONDIRENTRY entry;

 if (ReadBufferAt(hFile, &entry, sizeof(entry),

 sizeof(hdr) + uiIcon * sizeof(entry))) {

 void *pvData = LocalAlloc(LMEM_FIXED, entry.dwBytesInRes);

 if (pvData) {

 if (ReadBufferAt(hFile, pvData,

 entry.dwBytesInRes, entry.dwImageOffset)) {

 // process one image in the icon

 }

 LocalFree(pvData);

http://blogs.msdn.com/b/oldnewthing/archive/2004/02/12/71851.aspx

3/3

 }

 }

 }

 }

 CloseHandle(hFile);

}
return 0;

}

Run this program with the name of an icon file on the command line,
and nothing interesting

happens because the program doesn’t
generate any output.
But if you step through it, you can

see that we start by
reading the ICONDIRHEADER
to verify that it’s an icon and determine the

number of images.
We then loop through the images: For each one,
we read the ICONDIR‐

ENTRY
(specifying the explicit file offset),
then read the image data (again, specifying the

explicit
file offset).

We use the ReadBufferAt function
to read data from the file.
For each read, we first call

SetFilePointer
to position the file pointer at the byte we want to read,
then call Read‐

File to read it.

Let’s change this program to take advantage of our newfound knowledge:

BOOL ReadBufferAt(__in HANDLE hFile,

 __out_bcount(cbBuffer) void *pvBuffer,

 DWORD cbBuffer,

 DWORD64 offset)

{

OVERLAPPED o = { 0 };

o.Offset = static_cast<DWORD>(offset);

o.OffsetHigh = static_cast<DWORD>(offset >> 32);

DWORD cbRead;

return ReadFile(hFile, pvBuffer, cbBuffer, &cbRead, &o) &&

 cbBuffer == cbRead;

}

We merge the
 SetFilePointer call into the
 ReadFile by specifying the desired byte

offset in the optional OVERLAPPED structure.
The I/O will still complete synchronously

(since we opened the handle synchronously),
but we saved ourselves the hassle of having to

call
two functions when it could be done with just one.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

