
1/8

March 14, 2012

How do I get mouse messages faster than
WM_MOUSEMOVE?

devblogs.microsoft.com/oldnewthing/20120314-00

Raymond Chen

We saw some time ago that
the rate at which you receive
WM_MOUSEMOVE messages
is entirely

up to how fast your program calls
GetMessage.
But what if your program is calling
 Get‐

Message as fast as it can,
and it’s still not fast enough?

You can use
the GetMouseMovePointsEx function
to ask the window manager,
“Hey, can you

tell me about the mouse messages I missed?”
I can think of two cases where you might want

to do this:

You are a program like Paint, where the user is drawing with the
mouse and you want

to capture every nuance of the mouse motion.

You are a program that supports something like mouse gestures,
so you want the full

mouse curve information so you can do your
gesture recognition on it.

Here’s a program that I wrote for a relative of mine who is a radiologist.
One part of his job

consists of sitting in a dark room
studying medical images.
He has to use his years of medical

training to identify the tumor
(if there is one),
and then determine what percentage of the

organ is afflicted.
To use this program, run it and position the circle so that
it matches the

location and size of the organ under study.
Once you have the circle positioned properly,
use

the mouse to draw an outline of the tumor.
When you let go of the mouse, the title bar will

tell you the
size of the tumor relative to the entire organ.

(Oh great, now I’m telling people to practice medicine without
a license.)

First, we’ll do a version of the program that just calls
 GetMessage as fast as it can.
Start

with the
new scratch program
and make the following changes:

https://devblogs.microsoft.com/oldnewthing/20120314-00/?p=8103
http://blogs.msdn.com/b/oldnewthing/archive/2003/10/01/55108.aspx
http://msdn.microsoft.com/en-us/library/ms646259(VS.85).aspx
https://www.youtube.com/watch?v=OaTO8_KNcuo
http://blogs.msdn.com/b/oldnewthing/archive/2005/04/22/410773.aspx

2/8

class RootWindow : public Window

{

public:

virtual LPCTSTR ClassName() { return TEXT("Scratch"); }

static RootWindow *Create();

protected:

LRESULT HandleMessage(UINT uMsg, WPARAM wParam, LPARAM lParam);

void PaintContent(PAINTSTRUCT *pps);

BOOL WinRegisterClass(WNDCLASS *pwc);

private:

RootWindow();

~RootWindow();

void OnCreate();

void UpdateTitle();

void OnSizeChanged(int cx, int cy);

void AlwaysAddPoint(POINT pt);

void AddPoint(POINT pt);

void OnMouseMove(LPARAM lParam);

void OnButtonDown(LPARAM lParam);

void OnButtonUp(LPARAM lParam);

// arbitrary limit (this is just a demo!)

static const int cptMax = 1000;

private:

POINT m_ptCenter;

int m_radius;

BOOL m_fDrawing;

HPEN m_hpenInside;

HPEN m_hpenDot;

POINT m_ptLast;

int m_cpt;

POINT m_rgpt[cptMax];

};
RootWindow::RootWindow()

: m_fDrawing(FALSE)

, m_hpenInside(CreatePen(PS_INSIDEFRAME, 3,

 GetSysColor(COLOR_WINDOWTEXT)))

, m_hpenDot(CreatePen(PS_DOT, 1, GetSysColor(COLOR_WINDOWTEXT)))

{

}

RootWindow::~RootWindow()

{

if (m_hpenInside) DeleteObject(m_hpenInside);

if (m_hpenDot) DeleteObject(m_hpenDot);

}

BOOL RootWindow::WinRegisterClass(WNDCLASS *pwc)

{

pwc->style |= CS_VREDRAW | CS_HREDRAW;

return __super::WinRegisterClass(pwc);

}

void RootWindow::OnCreate()

{

SetLayeredWindowAttributes(m_hwnd, 0, 0xA0, LWA_ALPHA);

3/8

}

void RootWindow::UpdateTitle()

{

TCHAR szBuf[256];

// Compute the area of the circle using a surprisingly good

// rational approximation to pi.

int circleArea = m_radius * m_radius * 355 / 113;

// Compute the area of the region, if we have one

if (m_cpt > 0 && !m_fDrawing) {

 int polyArea = 0;

 for (int i = 1; i < m_cpt; i++) {

 polyArea += m_rgpt[i-1].x * m_rgpt[i].y -

 m_rgpt[i].x * m_rgpt[i-1].y;

 }

 if (polyArea < 0) polyArea = -polyArea; // ignore orientation

 polyArea /= 2;

 wnsprintf(szBuf, 256,

 TEXT("circle area is %d, poly area is %d = %d%%"),

 circleArea, polyArea,

 MulDiv(polyArea, 100, circleArea));

} else {

 wnsprintf(szBuf, 256, TEXT("circle area is %d"), circleArea);

}
SetWindowText(m_hwnd, szBuf);

}

void RootWindow::OnSizeChanged(int cx, int cy)

{

m_ptCenter.x = cx / 2;

m_ptCenter.y = cy / 2;

m_radius = min(m_ptCenter.x, m_ptCenter.y) - 6;

if (m_radius < 0) m_radius = 0;

UpdateTitle();

}

void RootWindow::PaintContent(PAINTSTRUCT *pps)

{

HBRUSH hbrPrev = SelectBrush(pps->hdc,

 GetStockBrush(HOLLOW_BRUSH));

HPEN hpenPrev = SelectPen(pps->hdc, m_hpenInside);

Ellipse(pps->hdc, m_ptCenter.x - m_radius,

 m_ptCenter.y - m_radius,

 m_ptCenter.x + m_radius,

 m_ptCenter.y + m_radius);

SelectPen(pps->hdc, m_hpenDot);

Polyline(pps->hdc, m_rgpt, m_cpt);

SelectPen(pps->hdc, hpenPrev);

SelectBrush(pps->hdc, hbrPrev);

}

void RootWindow::AddPoint(POINT pt)

{

// Ignore duplicates

if (pt.x == m_ptLast.x && pt.y == m_ptLast.y) return;

// Stop if no room for more

http://www.piday.org/
http://blogs.msdn.com/b/oldnewthing/archive/2004/01/26/62991.aspx

4/8

if (m_cpt >= cptMax) return;

AlwaysAddPoint(pt);

}

void RootWindow::AlwaysAddPoint(POINT pt)

{

// Overwrite the last point if we can't add a new one

if (m_cpt >= cptMax) m_cpt = cptMax - 1;

// Invalidate the rectangle connecting this point

// to the last point

RECT rc = { pt.x, pt.y, pt.x+1, pt.y+1 };

if (m_cpt > 0) {

 RECT rcLast = { m_ptLast.x, m_ptLast.y,

 m_ptLast.x+1, m_ptLast.y+1 };

 UnionRect(&rc, &rc, &rcLast);

}
InvalidateRect(m_hwnd, &rc, FALSE);

// Add the point

m_rgpt[m_cpt++] = pt;

m_ptLast = pt;

}

void RootWindow::OnMouseMove(LPARAM lParam)

{

if (m_fDrawing) {

 POINT pt = { GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam) };

 AddPoint(pt);

}
}

void RootWindow::OnButtonDown(LPARAM lParam)

{

// Erase any previous polygon

InvalidateRect(m_hwnd, NULL, TRUE);

m_cpt = 0;

POINT pt = { GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam) };

AlwaysAddPoint(pt);

m_fDrawing = TRUE;

}

void RootWindow::OnButtonUp(LPARAM lParam)

{

if (!m_fDrawing) return;

OnMouseMove(lParam);

// Close the loop, eating the last point if necessary

AlwaysAddPoint(m_rgpt[0]);

m_fDrawing = FALSE;

UpdateTitle();

}

LRESULT RootWindow::HandleMessage(

 UINT uMsg, WPARAM wParam, LPARAM lParam)

{

switch (uMsg) {

 case WM_CREATE:

 OnCreate();

 break;

5/8

 case WM_NCDESTROY:

 // Death of the root window ends the thread

 PostQuitMessage(0);

 break;

 case WM_SIZE:

 if (wParam == SIZE_MAXIMIZED || wParam == SIZE_RESTORED) {

 OnSizeChanged(GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam));

 }

 break;

 case WM_MOUSEMOVE:

 OnMouseMove(lParam);

 break;

 case WM_LBUTTONDOWN:

 OnButtonDown(lParam);

 break;

 case WM_LBUTTONUP:

 OnButtonUp(lParam);

 break;

}
return __super::HandleMessage(uMsg, wParam, lParam);

}

RootWindow *RootWindow::Create()

{

RootWindow *self = new(std::nothrow) RootWindow();

if (self && self->WinCreateWindow(WS_EX_LAYERED,

 TEXT("Scratch"), WS_OVERLAPPEDWINDOW,

 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,

 NULL, NULL)) {

 return self;

 }

delete self;

return NULL;

}

This program records every mouse movement while the button
is down and replays them in

the form of a dotted polygon.
When the mouse button goes up, it calculates the area both
in

terms of pixels and in terms of a percentage of the circle.

This program works well.
My relative’s hand moves slowly enough (after all, it has
to trace a

tumor) that the GetMessage loop
is plenty fast enough to keep up.
But just for the sake of

illustration, suppose it isn’t.
To make the effect easier to see, let’s add some artificial
delays:

void RootWindow::OnMouseMove(LPARAM lParam)

{

if (m_fDrawing) {

 POINT pt = { GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam) };

 AddPoint(pt);

 UpdateWindow(m_hwnd);

 Sleep(100);

}
}

6/8

Now, if you try to draw with the mouse, you see all sorts of
jagged edges because our program

can’t keep up.
(The UpdateWindow is just to make the most recent
line visible while we are

sleeping.)

Enter
 GetMouseMovePointsEx .
This gives you all the mouse activity that led up to a specific

point in time,
allowing you to fill in the data that you missed because you weren’t
pumping

messages fast enough.
Let’s teach our program how to take advantage of this:

7/8

class RootWindow : public Window

{

...

void AlwaysAddPoint(POINT pt);

void AddMissingPoints(POINT pt, DWORD tm);

void AddPoint(POINT pt);

...

POINT m_ptLast;

DWORD m_tmLast;

int m_cpt;

};
void RootWindow::AddMissingPoints(POINT pt, DWORD tm)

{

// See discussion for why this code is wrong

ClientToScreen(m_hwnd, &pt);

MOUSEMOVEPOINT mmpt = { pt.x, pt.y, tm };

MOUSEMOVEPOINT rgmmpt[64];

int cmmpt = GetMouseMovePointsEx(sizeof(mmpt), &mmpt,

 rgmmpt, 64, GMMP_USE_DISPLAY_POINTS);

POINT ptLastScreen = m_ptLast;

ClientToScreen(m_hwnd, &ptLastScreen);

int i;

for (i = 0; i < cmmpt; i++) {

 if (rgmmpt[i].time < m_tmLast) break;

 if (rgmmpt[i].time == m_tmLast &&

 rgmmpt[i].x == ptLastScreen.x &&

 rgmmpt[i].y == ptLastScreen.y) break;

}
while (--i >= 0) {

 POINT ptClient = { rgmmpt[i].x, rgmmpt[i].y };

 ScreenToClient(m_hwnd, &ptClient);

 AddPoint(ptClient);

}
}

void RootWindow::AlwaysAddPoint(POINT pt)

{

...

// Add the point

m_rgpt[m_cpt++] = pt;

m_ptLast = pt;

m_tmLast = GetMessageTime();

}

void RootWindow::OnMouseMove(LPARAM lParam)

{

if (m_fDrawing) {

 POINT pt = { GET_X_LPARAM(lParam), GET_Y_LPARAM(lParam) };

 AddMissingPoints(pt, GetMessageTime());

 AddPoint(pt);

 UpdateWindow(m_hwnd);

 Sleep(100); // artificial delay to simulate unresponsive app

}
}

8/8

Before updating the the current mouse position,
we check to see if there were other mouse

motions
that occurred while we weren’t paying attention.
We tell GetMouseMovePointsEx ,

“Hey, here is a mouse message that I have right now.
Please tell me about the stuff that I

missed.”
It fills in an array with recent mouse history,
most recent events first.
We go

through that array looking for the previous point,
and give up either when we find it, or when

the timestamps
on the events we received take us too far backward in time.
Once we find all

the points that we missed,
we play them into the AddPoint function.

Notes to people who like to copy code without understanding it:
The code fragment

above works only for
single-monitor systems.
To work correctly on multiple-monitor

systems,
you need to include the crazy coordinate-shifting
code provided in the

documentation for
 GetMouseMovePointsEx .
(I omitted that code because it would just be

distracting.)
Also, the management of m_tmLast is now
rather confusing, but I did it this

way to minimize the
amount of change to the original program.
It would probably be better

to have added a
 DWORD tm parameter to AddPoint
instead of trying to infer it from the

current message time.

The
 GetMouseMovePointsEx
technique is also
handy if you need to refer back to the

historical record.
For example, if the user dragged the mouse out of your window
and you

want to calculate the velocity with which the mouse exited,
you can use
 GetMouseMove‐

PointsEx
to get the most
recent mouse activity and calculate the velocity.
This saves you

from having to record all the mouse activity yourself
on the off chance that the mouse might

leave the window.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

