
1/4

February 24, 2012

Why does Windows keep showing the old indirect strings
even after I update the binary?

devblogs.microsoft.com/oldnewthing/20120224-00

Raymond Chen

If your application uses indirect localized string resources,
and you update the application,

you may find that Windows
keeps using the old string from the previous version of the

application.

For example,
suppose that you set the localized name for a shortcut to
 @C:\Program

Files\Contoso\Contoso.exe,-1 ,
and in version 1 of your program,
you have

LANGUAGE LANG_ENGLISH, SUBLANG_NEUTRAL

STRINGTABLE

BEGIN

1 "Contoso Document Services"

END

LANGUAGE LANG_GERMAN, SUBLANG_NEUTRAL

STRINGTABLE

BEGIN

1 "Contoso Dokumentdienste"

END

For version 2, your marketing team decides that the
program should really be called
Contoso

Document System,
so you change the resource file to read

LANGUAGE LANG_ENGLISH, SUBLANG_NEUTRAL

STRINGTABLE

BEGIN

1 "Contoso Document System"

END

LANGUAGE LANG_GERMAN, SUBLANG_NEUTRAL

STRINGTABLE

BEGIN

1 "Contoso Dokumentsystem"

END

The user upgrades to version 2 of your program, but the
shortcut on the Start menu still

reads
Contoso Document Services.
What’s going on?

https://devblogs.microsoft.com/oldnewthing/20120224-00/?p=8233

2/4

The shell keeps a cache of indirect localized strings because
loading a DLL just to read a

string out of it is pretty expensive.
This cache is keyed by the string location specifier,
and

since your string location specifier hasn’t changed
from its previous value of
 @C:\Program

Files\Contoso\Contoso.exe,-1 ,
the shell continues using the value it stored away in its

cache,
which if the user had previously been using version 1 of your
program, is the string

Contoso Document Services.

Some people, having discovered this behavior, have tried to go in
and tinker with the shell’s

internal cache of indirect localized strings,
but such a technique is doomed to failure because

the location of that
cache changes pretty regularly,
and besides, it’s an internal

implementation detail.
(And even if you find it and manage to fiddle with it,
you only fix the

problem for the current user.
Other users will still have the stale cache entry.)

The best solution is to treat indirect strings as locked:
Once you decide what a string should

say, you can’t change it.
When you issue version 2 of Contoso.exe ,
you can create a second

string

LANGUAGE LANG_ENGLISH, SUBLANG_NEUTRAL

STRINGTABLE

BEGIN

1 "Contoso Document Services" // shortcuts from version 1.0 use this

2 "Contoso Document System" // shortcuts from version 2.0 use this

END

LANGUAGE LANG_GERMAN, SUBLANG_NEUTRAL

STRINGTABLE

BEGIN

1 "Contoso Dokumentdienste" // shortcuts from version 1.0 use this

2 "Contoso Dokumentsystem" // shortcuts from version 2.0 use this

END

and have the installer for version 2.0 create a shortcut
whose indirect localized string

specifier is

@C:\Program Files\Contoso\Contoso.exe,-2

I admit that this method is rather clumsy and requires more attention
on the part of the

developer.
Everybody wants the “cheap” way out, where the definition of “cheap”
is not

“cheapest for the customer” but rather “cheapest for me,
the developer, because there’s a new

episode of
Doctor Who
tonight and I don’t want to miss it.”

We saw last time that
the format for indirect localized string resources
has room for a

comment.
And it’s the comment that we can take advantage of here.
The shell uses the entire

string location specifier as the key for
its cache lookup, and that string includes the comment.

Therefore, if you simply change the comment, that results in a cache
miss, and the shell will

go and re-fetch the string.

@C:\Program Files\Contoso\Contoso.exe,-1;v2

http://blogs.msdn.com/b/oldnewthing/archive/2012/02/23/10271263.aspx

3/4

By appending a ;v2 to the string, you made it different
from its predecessor, which means

that the string cached by the
predecessor won’t be used.

As I noted, this is cheap for the developer, but not necessarily
cheap for the customer.

Suppose the customer copied the shortcut to Contoso version 1
to their desktop,
then

upgraded to version 2.
The upgrade replaces the shortcut in the Start menu, but the
copy on

the desktop remains unchanged.
You now have a shortcut on the desktop whose indirect

string is

@C:\Program Files\Contoso\Contoso.exe,-1

and a shortcut on the Start menu whose indirect string is

@C:\Program Files\Contoso\Contoso.exe,-1;v2

Since the shortcut on the desktop was created while version 1
was still installed on the

computer,
its name will read Contoso Document Services
because that was the contents of

string 1.
On the other hand, the shortcut on the Start menu will read
Contoso Document

System because its use of the ;v2
forced the shell to go back and look again,
and this time it

sees the revised string.
So far so good.

But then the user does something which causes the cache to be pruned,
like, say,
changing

their UI language to German.
The shell says,
“Okay, the UI language changed, I need to go

reload all these
indirect strings because MUI is going to change them to the new language.”

The shell sees the shortcut on the Start menu, reads string 1
out of Contoso.exe , and gets

Contoso Dokumentsystem.
The shell then sees the shortcut on the desktop, reads string 1
out

of Contoso.exe , and gets…
Contoso Dokumentsystem.
Not Contoso Dokumentdienste.

Notice that the name of the shortcut on the desktop was silently
upgraded to Contoso

version 2.

Even if the user changes the language back to English in an attempt
to get things back to the

way they were, it won’t work.
The shell sees the shortcut on the Start menu, reads string 1
out

of Contoso.exe , and gets
Contoso Document System.
The shell then sees the shortcut on

the desktop, reads string 1
out of Contoso.exe , and gets
Contoso Document System,
not

Contoso Document Service.
The original string from the first version of Contoso.exe
is

already gone; the only way to get it back is to reinstall
Contoso version 1.

But at least you didn’t miss your TV show.

Bonus chatter:
The one case I can think of where the cheap way out is
acceptable is when

you are issuing a prerelease version.
For your prerelease versions, you can append

;prerelease build xxxxx to your string
location specifier (where xxxxx is the build

number),
so that each time the user upgrades
to a new build, the string is reloaded from

http://blogs.msdn.com/b/oldnewthing/archive/2006/04/24/582153.aspx

4/4

scratch.
This still has the same problem described above if the user
has data left over from a

previous build, but since it’s
a prerelease build, you can just declare that as not a
supported

configuration.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

