
1/4

December 26, 2011

Why is the file size reported incorrectly for files that are
still being written to?

devblogs.microsoft.com/oldnewthing/20111226-00

Raymond Chen

The shell team often gets questions like these from customers:

Attached please find a sample program which continuously
writes data to a file.
If you open the
folder containing the file in Explorer, you can see
that the file size is reported as zero.
Even
manually refreshing the Explorer window does not update the file size.
Even the dir
command shows the file size as zero.
On the other hand, calling GetFileSize reports
the
correct file size.
If I close the file handle, then Explorer and the dir
command both report the
correct file size.
We can observe this behavior on Windows Server 2008 R2,
but on Windows
Server 2003, the file sizes are updated in both Explorer
and dir .
Can anybody explain what is
happening?

We have observed that Windows gives the wrong file size for
files being written.
We have a log
file that our service writes to,
and we like to monitor the size of the file by watching
it in
Explorer, but the file size always reports as zero.
Even the dir command reports the file size
as zero.
Only when we stop the service does the log file size get reported
correctly.
How can we
get the file size reported properly?

We have a program that generates a large number of files in the current
directory.
When we
view the directory in Explorer, we can watch the files as they
are generated, but the file size of
the last file is always reported as zero.
Why is that?

Note that this is not even a shell issue.
It’s a file system issue,
as evidenced by the fact that a

dir command exhibits
the same behavior.

Back in the days of FAT, all the file metadata was stored in the
directory entry.

The designers of NTFS had to decide where to store their metadata.
If they chose to do things

the UNIX way,
the directory entry would just be a name
and a reference to the file metadata

(known in UNIX-land as an inode).
The problem with this approach is that every directory

https://devblogs.microsoft.com/oldnewthing/20111226-00/?p=8813

2/4

listing would require
seeking all over the disk
to collect the metadata to report for each file.

This would have made NTFS slower than FAT at listing the contents
of a directory, a rather

embarrassing situation.

Okay, so some nonzero amount of metadata needs to go into the
directory entry.
But NTFS

supports hard links, which complicates matters
since a file with multiple hard links has

multiple directory entries.
If the directory entries disagree, who’s to say which one is right?

One way out would be try very hard to keep all the directory entries
in sync and to make the

chkdsk program arbitrary choose
one of the directory entries as the “correct” one in the

case a conflict
is discovered.
But this also means that if a file has a thousand hard links, then

changing the file size would entail updating a thousand directory entries.

That’s where the NTFS folks decided to draw the line.

In NTFS, file system metadata is a property not of the directory
entry but rather of the file,

with some of the metadata replicated into the directory entry as a
tweak to improve directory

enumeration performance.
Functions like
 FindFirstFile report the directory entry,
and

by putting the metadata that FAT users were accustomed to getting
“for free”, they could

avoid being slower
than FAT for directory listings.
The directory-enumeration functions

report the last-updated metadata,
which may not correspond to the actual metadata if the

directory entry
is stale.

The next question is where and how often this metadata replication is done;
in other words,

how stale is this data allowed to get?
To avoid having to update a potentially unbounded

number of
directory entries each time a file’s metadata changed, the NTFS folks
decided that

the replication would be performed only from the file into
the directory entry that was used

to open the file.
This means that if a file has a thousand hard links,
a change to the file size

would be reflected in the directory entry
that was used to open the file, but the other 999

directory entries
would contain stale data.

As for how often, the answer is a little more complicated.
Starting in Windows Vista (and its

corresponding Windows Server version
which I don’t know but I’m sure you can look up,
and

by “you” I mean “Yuhong Bao”),
the NTFS file system performs this courtesy replication

when the
last handle to a file object is closed.
Earlier versions of NTFS replicated the data

while the file
was open whenever the cache was flushed, which meant that it happened
every

so often according to an unpredictable schedule.
The result of this change is that the

directory entry now gets updated
less frequently, and therefore the last-updated file size is

more
out-of-date than it already was.

Note that even with the old behavior, the file size was still
out of date (albeit not as out of

date as it is now),
so any correctly-written program already had to accept the possibility
that

the actual file size differs from the size reported by
 FindFirstFile .
The change to suppress

3/4

the “bonus courtesy updates” was made for
performance reasons.
Obviously, updating the

directory entries results in additional I/O
(and forces a disk head seek),
so it’s an expensive

operation for relatively little benefit.

If you really need the actual file size right now, you can do what
the first customer did and

call GetFileSize .
That function operates on the actual file and not on the directory entry,

so it gets the real information and not the shadow copy.
Mind you, if the file is being

continuously written-to,
then the value you get is already wrong the moment you receive it.

Why doesn’t Explorer do the
 GetFileSize thing when it enumerates the contents
of a

directory so it always reports the accurate file size?
Well, for one thing, it would be kind of

presumptuous of Explorer to
second-guess the file system.
“Oh, gosh, maybe the file system

is lying to me.
Let me go and verify this information via a slower alternate mechanism.”
Now

you’ve created this environment of distrust.
Why stop there?
Why not also verify file

contents?
“Okay, I read the first byte of the file and it returned 0x42, but I’m
not so sure the

file system isn’t trying to trick me, so after reading
that byte, I will open the volume in raw

mode, traverse the file system
data structures, and find the first byte of the file myself,
and if

it isn’t 0x42, then somebody’s gonna have some explaining to do!”
If the file system wants to

lie to us,
then let the file system lie to us.

All this verification takes
an operation that could be done in
2 + N/500 I/O operations
and

slows it down to
2 + N/500 + 3N operations.
And you’re reintroduced all the disk seeking

that all the work was intended to avoid!
(And if this is being done over the network,
you can

definitely feel a 1500× slowdown.)
Congratulations, you made NTFS slower than FAT.
I hope

you’re satisfied now.

If you were paying close attention, you’d have noticed that I wrote
that the information is

propagated into the directory when the last handle
to the file object is closed.
If you call

CreateFile twice on the same file,
that creates two file objects which refer to the same

underlying file.
You can therefore trigger the update of the directory entry from another

program by simply opening the file and then closing it.

void UpdateFileDirectoryEntry(__in PCWSTR pszFileName)

{

 HANDLE h = CreateFileW(

 pszFileName,

 0, // don't require any access at all

 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,

 NULL, // lpSecurityAttributes

 OPEN_EXISTING,

 0, // dwFlagsAndAttributes

 NULL); // hTemplateFile

 if (h != INVALID_HANDLE_VALUE) {

 CloseHandle(h);

 }

}

4/4

You can even trigger the update from the program itself.
You might call a function like this

every so often
from the program generating the output file:

void UpdateFileDirectoryEntry(__in HANDLE hFile)

{

 HANDLE h = ReOpenFile(

 hFile,

 0, // don't require any access at all

 FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,

 0); // dwFlags

 if (h != INVALID_HANDLE_VALUE) {

 CloseHandle(h);

 }

}

If you want to update all file directory entries (rather than a specific
one), you can build the

loop yourself:

// functions ProcessOneName and EnumerateAllNames

// incorporated by reference.

void UpdateAllFileDirectoryEntries(__in PCWSTR pszFileName)

{

 EnumerateAllNames(pszFileName, UpdateFileDirectoryEntry);

}

Armed with this information, you can now give a fuller explanation of
why ReadDirectory‐

ChangesW does not
report changes to a file until the handle is closed.
(And why it’s not a bug

in
 ReadDirectoryChangesW .)

Bonus chatter:
Mind you, the file system could expose a flag to
a FindFirstFile -like

function that
means “Accuracy is more important than performance;
return data that is as

up-to-date as possible.”
The NTFS folks tell me that implementing such a flag wouldn’t be
all

that hard.
The real question is whether anybody would bother to use it.
(If not, then it’s a

bunch of work for no benefit.)

Bonus puzzle:
A customer observed that whether the
file size in the directory entry was

being updated
while the file was being written depended on what
directory the file was

created in.
Come up with a possible explanation for this observation.

Bonus reading:

Raymond Chen

Follow

http://blogs.msdn.com/b/oldnewthing/archive/2011/07/20/10188033.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/08/12/10195186.aspx#10195204
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

