
1/4

December 16, 2011

Programmatically controlling which handles are inherited
by new processes in Win32

devblogs.microsoft.com/oldnewthing/20111216-00

Raymond Chen

In unix, file descriptors are inherited by child processes by default.
This wasn’t so much an

active decision as it was a consequence
of the fork/exec model.
To exclude a file descriptor

from being inherited by children,
you set the FD_CLOEXEC flag on the file descriptor.

Win32 sort of works like that, but backwards, and maybe a little
upside-down.
And in high

heels.

In Win32, handles default to not inherited.
Ways to make a handle inherited during

CreateProcess
have grown during the evolution of Win32.

As far as I can tell, back in the old days,
inheritability of handles was established at handle

creation time.
For most handle creation functions, you do this by passing
a

SECURITY_ATTRIBUTES structure
with bInheritHandle set
to TRUE .
Functions which

created handles from existing objects don’t have
a SECURITY_ATTRIBUTES parameter,
so

they instead have an explicit bInheritHandle
parameter.
(For examples, see
 OpenEvent

and DuplicateHandle .)

But just marking a handle as inheritable isn’t good enough to get
it inherited.
You also have

to pass
 TRUE
as the
 bInheritHandles parameter to CreateProcess .
A handle will be

inherited only if
if the bInheritHandles parameter is
 TRUE and the handle is marked as

inheritable.
Miss either of those steps, and you don’t get your inheritance.
(To make sure you

get your inheritance IRL, be nice to your grandmother.)

In Windows 2000,
Win32 gained the ability to alter the inheritability of a handle
after it is

created.
The
 SetHandleInformation function
lets you turn the HANDLE_FLAG_INHERIT

flag on and off on a handle.

But all this inheritability fiddling still had a fatal flaw:
What if two threads within the same

process both call
 CreateProcess but disagree on which handles
they want to be inherited?

For example, suppose you have a function
 CreateProcessWithSharedMemory
whose job it

https://devblogs.microsoft.com/oldnewthing/20111216-00/?p=8873
http://www.gingerrogers.com/about/quotes.html

2/4

is to
launch a process, passing it
a custom-made shared memory block.
Suppose two threads

run this function simultaneously.

A B

CreateFileMapping(inheritable=TRUE) CreateFileMapping(inheritable=TRUE)

returns handle H1 returns handle H2

CreateProcess(“A”,
bInheritHandles=TRUE)

CreateProcess(“B”,
bInheritHandles=TRUE)

CloseHandle(H1) CloseHandle(H2)

What just happened?
Since inheritability is a property of the handle,
processes A and B

inherited both handles
H1 and H2, even though what we wanted was
for process A to inherit

handle H1 and
for process B to inherit handle H2.

For a long time, the answer to this problem was the unsatisfactory
“You’ll just have to

serialize your calls to
 CreateProcessWithSharedMemory
so that thread B won’t

accidentally cause a handle from
thread A to be inherited by process B.”
Actually, the answer

was even worse.
You had to serialize all functions that created inheritable
handles from the

time the handle was created,
through the call to
 CreateProcess ,
and waiting until after all

those inheritable handles were made
no longer inheritable.

This was a serious problem since who knows what other parts of
your program are going to

call CreateProcess
with bInheritHandles set to TRUE ?
Sure you can control the calls

that your own code made,
but what about calls from plug-ins or other unknown components?

(This is
another case of
kernel-colored glasses.)

Windows Vista addresses this problem by allowing you to
pass an explicit list of handles you

want the
 bInheritHandles parameter to apply to.
(If you pass an explicit list, then you

must pass
 TRUE for bInheritHandles .)
And as before, for a handle to be inherited, it

must be
also be marked as inheritable.

Passing the list of handles you want to inherit is a multi-step
affair.
Let’s walk through it:

http://blogs.msdn.com/b/oldnewthing/archive/2003/12/11/56043.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2007/05/02/2365433.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/05/12/10163578.aspx

3/4

BOOL CreateProcessWithExplicitHandles(

 __in_opt LPCTSTR lpApplicationName,

 __inout_opt LPTSTR lpCommandLine,

 __in_opt LPSECURITY_ATTRIBUTES lpProcessAttributes,

 __in_opt LPSECURITY_ATTRIBUTES lpThreadAttributes,

 __in BOOL bInheritHandles,

 __in DWORD dwCreationFlags,

 __in_opt LPVOID lpEnvironment,

 __in_opt LPCTSTR lpCurrentDirectory,

 __in LPSTARTUPINFO lpStartupInfo,

 __out LPPROCESS_INFORMATION lpProcessInformation,

 // here is the new stuff

 __in DWORD cHandlesToInherit,

 __in_ecount(cHandlesToInherit) HANDLE *rgHandlesToInherit)

{

BOOL fSuccess;

BOOL fInitialized = FALSE;

SIZE_T size = 0;

LPPROC_THREAD_ATTRIBUTE_LIST lpAttributeList = NULL;

fSuccess = cHandlesToInherit < 0xFFFFFFFF / sizeof(HANDLE) &&

 lpStartupInfo->cb == sizeof(*lpStartupInfo);

if (!fSuccess) {

 SetLastError(ERROR_INVALID_PARAMETER);

}
if (fSuccess) {

 fSuccess = InitializeProcThreadAttributeList(NULL, 1, 0, &size) ||

 GetLastError() == ERROR_INSUFFICIENT_BUFFER;

}
if (fSuccess) {

 lpAttributeList = reinterpret_cast<LPPROC_THREAD_ATTRIBUTE_LIST>

 (HeapAlloc(GetProcessHeap(), 0, size));

 fSuccess = lpAttributeList != NULL;

}
if (fSuccess) {

 fSuccess = InitializeProcThreadAttributeList(lpAttributeList,

 1, 0, &size);

}
if (fSuccess) {

 fInitialized = TRUE;

 fSuccess = UpdateProcThreadAttribute(lpAttributeList,

 0, PROC_THREAD_ATTRIBUTE_HANDLE_LIST,

 rgHandlesToInherit,

 cHandlesToInherit * sizeof(HANDLE), NULL, NULL);

}
if (fSuccess) {

 STARTUPINFOEX info;

 ZeroMemory(&info, sizeof(info));

 info.StartupInfo = *lpStartupInfo;

 info.StartupInfo.cb = sizeof(info);

 info.lpAttributeList = lpAttributeList;

 fSuccess = CreateProcess(lpApplicationName,

 lpCommandLine,

http://blogs.msdn.com/b/oldnewthing/archive/2005/06/28/433341.aspx

4/4

 lpProcessAttributes,

 lpThreadAttributes,

 bInheritHandles,

 dwCreationFlags | EXTENDED_STARTUPINFO_PRESENT,

 lpEnvironment,

 lpCurrentDirectory,

 &info.StartupInfo,

 lpProcessInformation);

}
if (fInitialized) DeleteProcThreadAttributeList(lpAttributeList);

if (lpAttributeList) HeapFree(GetProcessHeap(), 0, lpAttributeList);

return fSuccess;

}

After some initial sanity checks, we start doing real work.

Initializing a PROC_THREAD_ATTRIBUTE_LIST
is a two-step affair.
First you call

InitializeProcThreadAttributeList
with a NULL attribute list in order to determine

how
much memory you need to allocate for a one-entry attribute list.
After allocating the

memory, you call
 InitializeProcThreadAttributeList
a second time to do the actual

initialization.

After creating the attribute list, you set the one entry
by calling
 UpdateProcThread‐

AttributeList .

And then it’s off to the races.
Put that attribute list in a STARTUPINFOEX
structure, set the

EXTENDED_STARTUPINFO_PRESENT flag,
and hand everything off to CreateProcess .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

