
1/3

December 15, 2011

Not even making it to the airtight hatchway: Execution
even before you get there

devblogs.microsoft.com/oldnewthing/20111215-00

Raymond Chen

Today’s dubious security vulnerability comes from somebody who
reported that the Load‐

KeyboardLayout function
had a security vulnerability which could lead to arbitrary code

execution.
This is a serious issue, but reading the report made us wonder
if something was

missing.

// sample program to illustrate the vulnerability.

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

int __cdecl main(int argc, char **argv)

{

LoadKeyboardLayout("whatever", system("notepad.exe"));

return 0;

}

According to the report, this sample program illustrates that
the LoadKeyboardLayout

function
will execute whatever you pass as its second parameter.
In this case, the program

chose to launch Notepad,
but obviously an attacker could change the code to something
more

dangerous.

We had trouble trying to figure out what the person was trying to say.
After all, it’s not the

LoadKeyboardLayout function
that is executing the second parameter.
It’s the sample

program that’s doing it,
and using the return value as the second parameter to the
 Load‐

KeyboardLayout function.
I mean, you can use this “technique” on the function

void donothing(int i) { }

to demonstrate that the donothing function has
the same “vulnerability”:

donothing(system("notepad.exe"));

Logically, the compiler decomposes the call to
 LoadKeyboardLayout function as

auto param2 = system("notepad.exe");

LoadKeyboardLayout("whatever", param2);

https://devblogs.microsoft.com/oldnewthing/20111215-00/?p=8883

2/3

and now it’s clear that it’s not the
 LoadKeyboardLayout function which is
executing its

second parameter; it’s you.

This is like taking a printed picture of your friend into a secured area,
then saying,
“See, I

have a picture!
Your security failed to stop me from taking a picture!”
That picture was taken

outside the secured area.
What you have is not a security vulnerability because the picture

was taken on the other side of the airtight hatchway.

Before contacting the submitter, we want to be sure that we weren’t
missing something,
but

after looking at it from every angle, we still couldn’t see what
the issue was.
We ran the

alleged exploit under the kernel debugger and traced
through the entire
 LoadKeyboard‐

Layout function (both the user-mode
part and the kernel-mode part)
to confirm that the

function never launched Notepad on its own.
We repeated the investigation on all service

packs on all
versions of Windows still under support (and even some that are
no longer

supported).
Still nothing.

Stumped, we contacted the submitter.
“From what we can tell, the call to system takes

place
before you call the
 LoadKeyboardLayout function.
Can you elaborate on how this

constitutes a vulnerability in the
 LoadKeyboardLayout function?”

Apparently, the submitter didn’t quite understand what we were after,
because the response

was just more of the same.
“I have discovered that the Visual Basic
 MsgBox function
has a

similar vulnerability:

Module Program

Sub Main()

MsgBox(System.Diagnostics.Process.Start("notepad.exe").ToString())

End Sub

End Module

The MsgBox method will execute whatever you
pass as its parameter,
as long as the result is

a string.
(You can even pass something that isn’t a string, but it’ll throw
an exception after

executing it.)
The documentation for MsgBox clearly states that
the function displays a

message box with the specified text.
It should therefore display a string and not execute a

program!”

At this point,
we had to give up.
We couldn’t figure out what the person was trying to report,

and our attempt to obtain a clarification was met with another version
of what appeared to be

the same nonsense.
As I recall, this entire investigation took five days to complete,
plus

another day or two to complete the necessary paperwork.
Each year,
200,000 vulnerability

reports are received,
and each one is taken seriously,
even the bogus-looking ones,
because

there might be a real issue hiding behind a bogus-looking report.
Sort of how the people in

the emergency communication center
have to follow through on every
911
call, even the ones

that they strongly suspect are bogus,
and even though dealing with the suspected-bogus ones

slows down the overall response time for everyone.

http://www.technologyreview.com/blog/editors/23100/
http://blogs.msdn.com/b/oldnewthing/archive/2008/03/14/8080140.aspx
http://en.wikipedia.org/wiki/Emergency_telephone_number
http://www2.newsadvance.com/lna/news/local/article/911_hang-ups_mean_backups_for_dispatchers/12264/

3/3

These sort-of-but-not-quite reports are among the most frustrating.
There’s enough sense in

the report that it makes you wonder if there’s
a real vulnerability lurking in there, but which

remains elusive because
the author is unable (perhaps due to a language barrier)
to articulate

it clearly.
They live in the shadowy ground between the reports that are
clearly crackpot
and

the reports which are clear enough that you can evaluate them
with confidence.
These

middle-ground reports are just plausible enough to be dangerous.
As a result, you close them

out with trepidation,
because there’s the risk
that there really is something there, but you just

aren’t seeing it.
Then you have nightmares that the finder has taken the report public,
and

the vulnerability report you rejected as bogus is now
headline news all over the technology

press.
(Or worse, exploits start showing up taking advantage of the vulnerability
you rejected

as bogus two months ago.)

Update:
Sure, this looks like something you can reject out of hand.
But maybe there’s

something there after all.
Perhaps
the system call somehow
“primed the pump” and left the

system in just the right state
so that an uninitialized variable resulted in Notepad being

launched a second time or editing its token to have higher
privileges.
In that case,
you

rejected a genuine security vulnerability,
and then when hackers start using it to build a

botnet,
somebody will go back into the vulnerability investigation logs,
and the only entry

will be
“Rejected without investigation by Bob.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

