
1/4

December 12, 2011

How can I tell whether a window is modal?
devblogs.microsoft.com/oldnewthing/20111212-00

Raymond Chen

A customer wanted a way to determine whether a particular
window is modal. They listed a

few methods they had tried
but found that it didn’t work and asked for assistance.

As Eric Lippert
is fond of saying,
“First, write your spec.”
Until you know what you want, you

won’t know how to get it.

First, you need to define what you mean by a modal window.
There are multiple competing

definitions.

The customer decided that the definition of modal window
they want is this one:

A modal window is a child window that requires the user
to interact with it before they can
return to operating
the parent application,
thus preventing any work on the application main
window.

One thing you notice in this definition is that it talks
both about windows and applications.

You have a child window, a parent application,
and even an application main window.
This

implies that a modal window must be in a different application
from its parent.
(If it were in

the same application, then it vacuously does not
prevent you from interacting with the parent

application because
it is the parent application.)
But modality is a user interface concept, not

a process management
concept, so it’s unclear why process considerations appear in the

definition.
End-users sitting in front of a user interface see windows,
not processes.
I’m going

to assume that the use of the term application here
is a mistake, and that all we’re talking

about is windows.

The second thing you realize from this definition is that it
is describing something

impossible.
In Windows, child windows cannot be interacted with when their
parent window

is disabled.
This definition appears to be using a common abuse of terminology,
using the

words child and parent
instead of the more accurate but clumsier
owned and owner.
This

common abuse of terminology rarely causes trouble among
people with experience

programming the Windows user interface,
but it is often a source of confusion for beginners,

which is why I try to use the precise terminology
rather than the casual terminology.
And this

question was clearly asked by a beginner.

https://devblogs.microsoft.com/oldnewthing/20111212-00/?p=8923
http://blogs.msdn.com/ericlippert/
http://stackoverflow.com/questions/921180/c-round-up/926806#926806
http://blogs.msdn.com/b/oldnewthing/archive/2005/02/18/376080.aspx


2/4

Another thing you notice about this definition is that it
involves not two but three windows:

The child window, the parent window, and the application main window.
Consider the

situation where you have an application main window
(which is interactive), a secondary

window (which is not interactive),
and a tertiary window which is a child of by the secondary

window
with which the user must interact in order to return to operating
the secondary

window.

Application

main window

Secondary Solid borders represent interactive windows;

dotted borders represent non-interactive windows.


Lines connect children (below) to parents (above).
 

Tertiary

Is the tertiary window modal, according to this definition?
I’m not sure.
It is not clear to me

whether the clause
“thus preventing any work on the application main window”
is an

additional constraint or is merely elaborative.
If the clause is an additional contraint, then

the situation
is not modal, because the application main window is still interactive.
On the

other hand, if the clause is merely elaborative,
then the situation is modal, because the

tertiary window
prevents the user from interacting with the secondary window.

The fourth thing you realize from this definition is that it
requires predicting the future.
How

do you know that the owner window will be available for
use once you dismiss the owned

window?
Mabe the application does “ if (time(NULL) % 2)

make_parent_available(); “.
(Perhaps we can call upon the
graduates of the DePaul

University with a degree in predicting the future
to help us here.)

Even if the result doesn’t depend on predicting the future,
determining whether the window

will re-enable its parent
requires a level of code understanding beyond what can easily
be

achieved programmatically.
(You would have to find the code in the other program
and study

it to determine whether it re-enables the parent window
as part of its interaction. This can be

hard to do by a human being
with source code,
much less by a computer program with only

object code, especially
if the object code is in an interpreted language, since you now have
to

reverse-engineer the interpreter too!)

No wonder the problem is so difficult:
The spec uses imprecise terminology, is unclear on its

criteria,
and requires
metaphysical
certitude beyond the current level of scientific

understanding.

Let’s see what we can salvage from this definition.
First, let’s make the terminology more

precise:

http://www.cio.com/article/596981/Chicago_School_to_Offer_Degree_in_Predicting_the_Future


3/4

A modal window is an owned window that requires the user
to interact with it before they can
return to operating
the owner window,
thus preventing any work on the application main
window.

Next, let’s delete the clause whose meaning is unclear.

A modal window is an owned window that requires the user
to interact with it before they can
return to operating
the owner window.

Finally, let’s remove the part that requires predicting
the future.
Instead of describing future

behavior (which is hard to predict),
we’ll make our
requirements based on present behavior

(which can be observed without the aid of a time machine).

A modal window is an owned window
whose owner window cannot be interacted with.

The revised spec says that a modal window is an owned window
whose owner is disabled.

Bingo, there’s your algorithm for detecting whether a window is modal.
Once you have a good

spec, the code pretty much writes itself:

BOOL IsModalWindowAccordingToThisParticularSpec(HWND hwnd)

{

// child windows cannot have owners

if (GetWindowStyle(hwnd) & WS_CHILD) return FALSE;

HWND hwndOwner = GetWindow(hwnd, GW_OWNER);

if (hwndOwner == NULL) return FALSE; // not an owned window

if (IsWindowEnabled(hwndOwner)) return FALSE; // owner is enabled

return TRUE; // an owned window whose owner is disabled

}


Mind you, this spec may still not be what you actually want.
Consider the Notepad program.

Type Ctrl+F to call up the Find dialog.
This is a modeless dialog:
The main window is still

interactive.
While the Find dialog is up,
call up the About dialog from the Help menu.
You

now have the main Notepad window with two owned windows,
an About dialog that will re-

enable the main Notepad window
when it is dismissed,
and a Find dialog that will not.

Notepad main
window

A connector is solid if the owned window re-enables
the owner, dotted
if it does not.
(Remember, whether the line is dotted or not cannot
be
determined algorithmically.)

   

About Find

According to our spec, which of these windows is modal?
Does that match your intuitive

sense?

Here’s another case:
From Notepad’s Open dialog, type the name of a file that does not
exist.

http://blogs.msdn.com/b/oldnewthing/archive/2011/12/07/10244820.aspx


4/4

Notepad main window

 

Open

 

File not found

Which of these windows is a modal window?

Still unresolved is whether
this is the right definition for the customer’s needs.
The customer

never explained why they needed to identify
modal windows, and once we gave them the

IsModalWindowAccordingToThisParticularSpec 
function, they never wrote back.

If they were trying to identify modal windows so they could try
to close them, then in the File

not found case above,
they may try to close the Open window, when the correct
window to

close first is the File not found window,
because you need to
respect a window’s disabled

state.

Since the customer never wrote back, we will never know.

Raymond Chen

Follow







http://blogs.msdn.com/b/oldnewthing/archive/2005/02/28/381591.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

