
1/4

November 30, 2011

If you protect a write with a critical section, you may also
want to protect the read

devblogs.microsoft.com/oldnewthing/20111130-00

Raymond Chen

It is common to have a critical section which protects against
concurrent writes to a variable

or collection of variables.
But if you protect a write with a critical section,
you may also want

to protect the read,
because the read might race against the write.

Adam Rosenfield
shared his experience with this issue
in a comment from a few years back.

I’ll reproduce the example here in part to save you the trouble of clicking,
but also to make

this entry look longer and consequently make it seem
like I’m actually doing some work

(when in fact Adam did nearly all of the
work):

https://devblogs.microsoft.com/oldnewthing/20111130-00/?p=9003
http://adamrosenfield.com/
http://blogs.msdn.com/b/oldnewthing/archive/2009/12/23/9940330.aspx#9940599

2/4

class X {

volatile int mState;

CRITICAL_SECTION mCrit;

HANDLE mEvent;

};
X::Wait() {

while(mState != kDone) {

 WaitForSingleObject(mEvent, INFINITE);

}
}

X::~X() {

DestroyCriticalSection(&mCrit);

}

X::SetState(int state) {

EnterCriticalSection(&mCrit);

// do some state logic

mState = state;

SetEvent(mEvent);

LeaveCriticalSection(&mCrit);

}

Thread1()

{

X x;

... spawn off thread 2 ...

x.Wait();

}

Thread2(X* px)

{

...

px->SetState(kDone);

...

}

There is a race condition here:

Thread 1 calls X::Wait and waits.

Thread 2 calls X::SetState .

Thread 2 gets pre-empted immediately after calling
 SetEvent .

Thread 1 wakes up from the
 WaitForSingleObject
call, notices that mState ==

kDone , and therefore
returns from the X::Wait method.

Thread 1 then destructs the X object, which
destroys the critical section.

Thread 2 finally runs and tries to leave a critical section
that has been destroyed.

The fix was to enclose the read of mState
inside a critical section:

3/4

X::Wait() {

while(1) {

 EnterCriticalSection(&mCrit);

 int state = mState;

 LeaveCriticalSection(&mCrit);

 if(state == kDone)

 break;

 WaitForSingleObject(mEvent, INFINITE);

}
}

Forgetting to enclose the read inside a critical section is a common
oversight.
I’ve made it

myself more than once.
You say to yourself,
“I don’t need a critical section here.
I’m just

reading a value which can safely be read atomically.”
But you forget that the critical section

isn’t just for protecting
the write to the variable;
it’s also to protect all the other actions that

take place under
the critical section.

And just to make it so I actually did some work today,
I leave you with this puzzle based on

an actual customer problem:

4/4

class BufferPool {

public:

BufferPool() { ... }

~BufferPool() { ... }

Buffer *GetBuffer()

{
 Buffer *pBuffer = FindFreeBuffer();

 if (pBuffer) {

 pBuffer->mIsFree = false;

 }

 return pBuffer;

}
void ReturnBuffer(Buffer *pBuffer)

{
 pBuffer->mIsFree = true;

}
private:

Buffer *FindFreeBuffer()

{
 EnterCriticalSection(&mCrit);

 Buffer *pBuffer = NULL;

 for (int i = 0; i < 8; i++) {

 if (mBuffers[i].mIsFree) {

 pBuffer = &mBuffers[i];

 break;

 }

 }

 LeaveCriticalSection(&mCrit);

 return pBuffer;

}
private:

CRITICAL_SECTION mCrit;

Buffer mBuffers[8];

};

The real class was significantly more complicated than this,
but I’ve distilled the problem to

its essence.

The customer added,
“I tried declaring mIsFree as a volatile variable,
but that didn’t seem

to help.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

