
1/2

November 23, 2011

It is not unreasonable to expect uninitialized garbage to
change at any time, you don't need to ask for an
explanation

devblogs.microsoft.com/oldnewthing/20111123-00

Raymond Chen

A customer admitted that they had a bug in their code:

#define UNICODE

#define _UNICODE

#include <windows.h>

// error checking removed for expository purposes

// code that writes out the data

RegSetValueEx(hkey, pszValue, 0, REG_SZ, (const BYTE *)pszData,

 _tcslen(pszData) * sizeof(TCHAR) + 1);

// code that reads the data

DWORD dwType, cbData;

RegQueryValueEx(hkey, pszValue, NULL, &dwType, NULL, &cbData);

TCHAR *pszData = new TCHAR[cbData / sizeof(TCHAR)];

RegQueryValueEx(hkey, pszValue, NULL, &dwType, pszData, &cbData);

One bug in the above code is in the final parameter passed to
 RegSetValueEx :
It’s

supposed to be the count in bytes,
but the calculation appends only one byte for the

terminating null
instead of a full TCHAR .
In other words, it should be

RegSetValueEx(hkey, pszValue, 0, REG_SZ, (const BYTE *)pszData,

 _tcslen(pszData) * sizeof(TCHAR) + sizeof(TCHAR));

For concreteness, let’s say the original string was five TCHAR s
in length, not counting the

terminating null.
Therefore, the correct buffer size is 12 bytes, but they passed only 11
to

RegSetValueEx .

This error is compounded in the code that reads the value back:
The code happily divides

cbData / sizeof(TCHAR)
without checking that the division is even.
In our example, the

call returns a length of 11 bytes.
They divide by sizeof(TCHAR) (which is 2, since the
code

is compiled as Unicode), leaving 5 (remainder discarded),
causing them to allocate a 5-

TCHAR buffer.

https://devblogs.microsoft.com/oldnewthing/20111123-00/?p=9053
http://blogs.msdn.com/b/oldnewthing/archive/2004/02/12/71851.aspx

2/2

That error would have been okay by itself except for another error,
which is calling Reg‐

QueryValueEx
a second time with
an invalid buffer size:
The cbData variable remains the

original value of 11
even though they allocated only 10 bytes.
The subsequent RegQuery‐

ValueEx call reads 11 bytes
into a 10-byte buffer.

The customer conceded that the code that writes the value is buggy,
but points out that the

code “worked” on Windows XP,
in the sense that the string read back from the registry was

correct.
But Windows Vista “broke” their program,
because the string read back now

contained garbage at the end.
Instead of returning "Hello" ,
it returned
 "HelloЀ╅۞" .

The customer wanted to know what change to Windows Vista broke
their program.

The change to Windows Vista that broke their program
is known as “luck running out.”
The

program contained three bugs, which combined to form a heap
buffer write overflow.
The

uninitialized garbage at the end of the heap block they
allocated happened to be zero on

Windows XP
due to a coincidence in the way their program allocated and freed
memory.

Consequently, when the data was read from the registry, the
“string” ended in a single null

byte instead of two.
The extra null byte that “happened to be there already”
combined with

the single null byte read from the registry to form
a proper null terminator.

When run on Windows Vista, that happy coincidence no longer
took place, and the

uninitialized garbage was nonzero,
resulting in the subsequent attempt to use the string to

read
past the end of the buffer and pick up heap garbage.
(Yay, bug number four: read

overflow.)
Why was the uninitialized garbage different?

It’s different because there was nothing forcing it to be the same.
The internals of the heap

manager change all the time.
(Look-aside lists, low fragmentation heap, and fault-tolerant

heap
are just a few recent examples.)
Any of these changes will result in heap memory being

used and reused
differently.
Plus, changes in other parts of Windows may have allocated and

freed
memory differently between Windows XP and Windows Vista.
Heck, the program itself

may have allocated and freed memory differently
due to the change in operating system.
(For

one thing, the length of the string "Windows Vista"
is different from the length of the

string "Windows XP" .)

Uninitialized garbage will contain unpredictable values.
There’s no point asking why you got

a different unpredictable value
this time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

