
1/2

November 18, 2011

Why does Internet Explorer not call
DLL_PROCESS_DETACH on my DLL when I call
ExitProcess?

devblogs.microsoft.com/oldnewthing/20111118-00

Raymond Chen

A customer asked a question,
but as is often the case,
the question was much more telling

than the answer.

We have an Internet Explorer plug-in which calls
 ExitProcess
to force Internet Explorer to
exit.
We found that when we do this, our plug-in does not receive a
 DLL_PROCESS_DETACH
notification.
What could be preventing our plug-in from receiving the
DLL_PROCESS_DETACH notification?

As we saw some time ago when we looked at
the way processes shut down
(plus
an important

follow-up
or two),
all a process has to do to thwart proper delivery of
 DLL_PROCESS_DETACH

notifications is to do something
untoward during shutdown, at which point the kernel
just

gives up and calls TerminateProcess.

But like I said, the answer is much less interesting than the question.
What if the user had an

unsaved email message at the time you decided
to exit Internet Explorer?
Recall that
plug-ins

are a guest in the host process; don’t go changing the carpet.
When we asked the customer

why they were exiting Internet Explorer from
their plug-in, we received the explanation,
“The

reason I am calling ExitProcess
is that I do not know another good way to exit Internet

Explorer
from a plug-in.”

In this case, the guest is doing far more than just changing
the carpet.
The guest called in a

demolition company!

“Why did you call the demolition company to destroy my house?”

“I couldn’t think of a good way to destroy your house.”

The point isn’t that it’s bad to use a telephone call to hire a demolition
company to destroy

somebody’s house and that you should use some other
method to contact them (like, say, a

text message).
The point is that
it’s bad to destroy somebody else’s house in the first place.

https://devblogs.microsoft.com/oldnewthing/20111118-00/?p=9083
http://blogs.msdn.com/oldnewthing/archive/2007/05/03/2383346.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/01/22/9951750.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2011/10/07/10221348.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2008/05/06/8461730.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2009/12/02/9931183.aspx
http://www.amazon.com/dp/B0045HCJGC/?tag=tholneth-20

2/2

Upon further investigation, the customer was writing a test
for their plug-in.
They open

Internet Explorer and navigate to a page that uses
the plug-in.
When they are satisfied that

the plug-in operated correctly,
they want to exit the copy of Internet Explorer in order to

conclude
the test.

If you want to destroy a house, then destroy your own house.
Call
 CoCreate‐

Instance(CLSID_InternetExplorer)
to build a house,
navigate to your test page with

IWebBrowser2::Navigate ,
and when you’re done, you can destroy the house with
 IWeb‐

Browser2::Quit() .
There is sample code to do exactly this in the documentation for
the

IWebBrowser2 interface.

Bonus chatter:
The IWebBrowser2 interface is scriptable.

var ie = new ActiveXObject("InternetExplorer.Application");

ie.Visible = true;

ie.Navigate("http://www.microsoft.com/");

WScript.Sleep(5000); // five seconds, say

ie.Quit();

Raymond Chen

Follow

http://msdn.microsoft.com/library/aa752127.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

