
1/3

November 4, 2011

How do I generate a unique 32-bit value for a time zone?
devblogs.microsoft.com/oldnewthing/20111104-00

Raymond Chen

Public Service Announcement:
Daylight Saving Time ends in most parts of the United States

this weekend.
Other parts of the world may change on a different day from the
United States.

A customer asked the following question:

Given two
 TIME_ZONE_INFORMATION structures,
I would like to compute a LONG for each
that I can then compare to determine whether they represent
the same time zone.
When I say the
same, I mean that when the two are passed
to SystemTimeToTzSpecificLocalTime
with
the same LPSYSTEMTIME input, the output is the same.

A TIME_ZONE_INFORMATION structure
contains more information than can be packed into a

32-bit value.
(At least there’s no obvious way to pack it into a 32-bit value.)
You’re not going

to be able to squeeze the entire structure
into a 32-bit value that is unique for each time zone,

so that comparing the 32-bit values will tell you whether the
time zones are the same or not.

Fortunately, the customer also provided context for the
question, explaining their underlying

problem.
And as is often the case, the customer had broken down the
problem into two parts,

one easy and one impossible.
The customer solved the easy part
and was asking for help with

the impossible part.

But on closer inspection, the problem wasn’t so much impossible
as it was improperly

specified:

The bigger problem I’m actually trying to solve is that we call
 SystemTimeToTzSpecific‐
LocalTime
inside a deeply
nested loop.
I would like to cache the results for performance,
using the time zone as a key to a CAtlMap
which would hold the cached results for each time
zone.
I’m looking for help coming up with what combinaion of the
structure members to use to
uniquely identify the time zone.

Okay,
the customer appears to be a bit confused about hash keys.
Hash keys do not need to

be unique for each time zone.
It is perfectly legitimate for two different items to result
in the

same hash value;
that’s why we have the term hash collision.
Of course, you want to take

https://devblogs.microsoft.com/oldnewthing/20111104-00/?p=9193
http://blogs.msdn.com/b/oldnewthing/archive/2010/11/05/10086404.aspx#10086843

2/3

reasonable steps to minimize collisions,
but when you don’t control the domain space,
hash

collisions are a part of life.

From looking at some time zone data, it looks like
 (Bias + StandardBias) is unique for
any time zone,
but I know that there are a lot of complicated
issues when dealing with time
zones
so I wanted to check if I could be sure of that.

LONG CTimeZoneTraits::GetHash(const TIME_ZONE_INFORMATION& tz)

{

return tz.Bias + tz.StandardBias;

}

int CTimeZoneTraits::Equals(const TIME_ZONE_INFORMATION& tz1,

 const TIME_ZONE_INFORMATION& tz2)

{

return tz1.Bias == tz2.Bias &&

 tz1.StandardBias == tz2.StandardBias &&

 tz1.DaylightBias == tz2.DaylightBias &&

 memcmp(&tz1.StandardDate, &tz2.StandardDate,

 sizeof(tz1.StandardDate) &&

 memcmp(&tz1.DaylightDate, &tz2.DaylightDate,

 sizeof(tz1.DaylightDate);

}

If you think it about it, it’s clear that
 (Bias + StandardBias) does not always uniquely

identify
a time zone.
Consider two cities at the same longitude in the same hemisphere
in the

middle of winter:
They will have the same StandardBias
(because they have the same

longitude) and the same
 Bias
(because Daylight Saving Time is not applicable during the

winter),
but if the cities are in different countries (or sometimes,
even
different parts of the

same country),
they will transition to/from Daylight Saving Time differently
and

consequently do not belong to the same time zone.

On the other hand, since this is being used simply as a hash key,
uniqueness is not an

absolute requirement,
so even a bad hash function will still “work”;
it’ll just be slower than a

good hash function.

If it were up to me, I would choose as a hash function
something like this:

LONG CTimeZoneTraits::GetHash(const TIME_ZONE_INFORMATION& tz)

{

return tz.StandardBias +

 tz.StandardDate.wDay +

 (tz.StandardDate.wDayOfWeek << 16) +

 (tz.StandardDate.wMonth << 24);

}

I wouldn’t use the Bias in the hash code because
the Bias changes over time.
If the hash

table lifetime extends across a daylight saving time transition,
then the Bias will change.

http://en.wikipedia.org/wiki/Time_in_Indiana

3/3

For the hash, I use the StandardBias , which is the number
of minutes east of UTC.
In

practice this does not exceed
60 × 25 = 1500,
and it’s a multiple of 30.
(But
not necessarily a

multiple of 60.)
The wDay is typically in the range [0,5], though it can
go as high as 31 if the

transition is based on a specific day.
Therefore, I’ll simply add it to the StandardBias ,

taking advantage of the fact that the StandardBias is
a multiple of 30.
The month and day

of the week are thrown into the upper 16 bits.

Now, this hash function will still have collisions: If there are
two time zones at the same

longitude
which transition to Standard time with the same rule,
but which transition to

Daylight time according to different rules,
then we will still have a collision.

I would like to reduce the number of collisions
by understanding how often two equal values of
(Bias + StandardBias)
could represent different time zones.

How likely is such a collision?
You can answer this question yourself:
Take all the time zones

currently known to the system and
hash them all to see what happens.
Of course,
time zones

change all the time,
so don’t assume that
your results will hold true in perpetuity,
but if

you’re just looking for a rough guide, calculating
against the current state of affairs is a pretty

good one.
It’s true that time zones change all the time,
but they typically don’t change by

much.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2007/03/09/1840625.aspx
http://www.kyivpost.com/news/nation/detail/113166/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

