
1/3

October 28, 2011

Why isn't my transparent static control transparent?
devblogs.microsoft.com/oldnewthing/20111028-00

Raymond Chen

A customer reported that their application uses transparent
static controls positioned over a

bitmap image control,
but even though they set the Transparent property on the static

control, the static control isn’t transparent.
The customer was kind enough to provide clear

steps to illustrate
the problem:

Open Visual Studio 2005 or 2008.

From the menu, select File,
New File, Visual C++,
Resource Template File (RCT).

Right-click on the RCT file, select Add Resource,
and add a bitmap named

IDB_BITMAP1 .

Open the dialog box (IDD_DIALOG1) and add a
“Picture Control”, specifying

IDC_BITMAP_1 as its ID.

Change the IDC_BITMAP_1 type to Bitmap
and change the value of the Image property

to IDB_BITMAP1 .

Add a “Static Text” control IDC_TEST_STATIC and
set its caption to “This is a test”.

Reposition the static control so it overlaps the
 IDC_BITMAP_1 control.

On the IDC_TEST_STATIC control,
set the Transparent property to True.

Type Ctrl+T to test the dialog and observe that the
static control is not transparent.

Dialog

This is a test

The Transparent property in Visual Studio corresponds to
the WS_EX_TRANSPARENT

window style,
and
the documentation explains
that

WS_EX_TRANSPARENT :
The window should not be painted until siblings beneath the window
(that were created by the same thread) have been painted.
The window appears transparent
because
the bits of underlying sibling windows have already been painted.

The observed behavior, therefore, matches the documentation:
The control underneath (the

bitmap control) paints first,
and then the static control paints on top of it.
And a static text

control paints by filling with the background brush
and drawing the text on top of it.
You can

https://devblogs.microsoft.com/oldnewthing/20111028-00/?p=9243
http://msdn.microsoft.com/library/ff700543.aspx

2/3

customize this behavior by responding to the
 WM_CTLCOLORSTATIC message:

HBRUSH CTestDlg::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)

{

HBRUSH hbr = __super::OnCtlColor(pDC, pWnd, nCtlColor);

if (pWnd->GetExStyle() & WS_EX_TRANSPARENT) {

 pDC->SetBkMode(TRANSPARENT);

 hbr = GetStockBrush(HOLLOW_BRUSH);

 // even better would be to use a pattern brush, if the background is fixed

}
return hbr;

}

The customer appreciated the explanation but was puzzled as to
why the Transparent is

available if it doesn’t work.
“We understand that we can use the WS_EX_TRANSPARENT

window style to create a transparent window and it will be painted
after its underlying

siblings, but the window style by itself doesn’t
make the static control transparent.
But if we

have to write the code above,
why is the Transparent property available in the Properties

box?”
They included a screen shot from Visual Studio where the built-in help
text for the

Transparent property reads
“Specifies that the control will have a transparent background.”

The WS_EX_TRANSPARENT style doesn’t mean
“transparent”; it means “paint over siblings.”

The style is called “transparent” not because it makes
the window transparent but because it

makes transparency possible.
It is one of the steps (but not the only one)
for making child

controls render transparently.
Another important step is ensuring that the
control does not

erase its background
in its WM_ERASEBKGND ,
and that’s the step that the OnCtlColor

override performs.

Why is the Transparent property offered for static controls
when it doesn’t actually work?

Shouldn’t it be disabled for static controls?

The reason why it is offered is that it is a general window style
that can be set on any control.

Visual Studio doesn’t know which controls can render transparently
and which ones don’t,
or

what extra steps are necessary to get
the ones who can render transparently to actually do so.

It just exposes the WS_EX_TRANSPARENT style and hopes
that you know what you’re doing.

In retrospect, it was a poor chose of name for the style.
And the incorrect online help doesn’t

make things any better.

Bonus chatter:
Note that the WS_EX_TRANSPARENT
extended style is overloaded.
In

addition to affecting painting,
it also affects hit-testing.

Raymond Chen

Follow

http://msdn.microsoft.com/library/0wwk06hc.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2003/11/12/55659.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/01/26/62991.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/12/30/10110077.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

