
1/4

October 24, 2011

If the shell is written in C++, why not just export its base
classes?

devblogs.microsoft.com/oldnewthing/20111024-00

Raymond Chen

ton suggested that
since the shell is written in C++,
IShellFolder should have been an

abstract class,
and then it could have used techniques like
exceptions and Inversion of

Control.

Okay, first of all, I’m not sure how Inversion of Control is
something that requires C++,
so

I’m going to leave that aside.

Second of all, who says the shell is written in C++?
As it happens, when IShellFolder was

introduced
in Windows 95,
the entire shell was written in plain C.
That’s right, plain C.

Vtables were built up by hand,
method inheritance was implemented by direct replacement

in the
vtable,
method overrides were implemented by function chaining,
multiple inheritance

was implemented by manually moving the pointer
around.

https://devblogs.microsoft.com/oldnewthing/20111024-00/?p=9303
http://blogs.msdn.com/oldnewthing/archive/2008/11/24/9137795.aspx#9138730

2/4

const IShellFolderVtbl c_vtblMyComputerSF =

{

MyComputer_QueryInterfaceSF,

MyComputer_AddRefSF,

MyComputer_ReleaseSF,

MyComputer_ParseDisplayName,

... you get the idea ...

};
const IPersistFolderVtbl c_vtblMyComputerPF =

{

MyComputer_QueryInterfacePF,

MyComputer_AddRefPF,

MyComputer_ReleasePF,

MyComputer_Initialize,

};
struct MyComputer {

IShellFolder sf;

IShellFolder pf;

ULONG cRef;

... other member variables go here ...

}

MyComputer *MyComputer_New()

{

MyComputer *self = malloc(sizeof(MyComputer));

if (self) {

 self->sf.lpVtbl = &c_vtblMyComputerSF;

 self->pf.lpVtbl = &c_vtblMyComputerPF;

 self->cRef = 1;

 ... other "constructor" operations go here ...

}
return self;

}

// sample cast

MyComputer *pThis;

IPersistFolder *ppf = &pThis->pf;

// sample method call

hr = IShellFolder_CompareIDs(psf, lParam, pidl1, pidl2);

// which expands to

hr = psf->lpVtbl->CompareIDs(psf, lParam, pidl1, pidl2);

// sample forwarder for multiply-derived method

HRESULT STDCALL MyComputer_QueryInterfacePF(

 IPersistFolder *selfPF, REFIID riid, void **ppv)

{

MyComputer *self = CONTAINING_RECORD(selfPF, MyComputer, pf);

return MyComputer_QueryInterfaceSF(&self->sf, riid, ppv);

}

So one good reason why the shell didn’t export its C++ base classes
was that it didn’t have

any C++ base classes.

3/4

Why choose C over C++?
Well, at the time the Windows 95 project started,
C++ was still a

relatively new language for systems programming.
While there were certainly people on the

shell team capable of
writing code in C++,
the old-timers grew up with C as their native

language,
and the newcomers weren’t taught C++ in their computer science classes.

(Computer science departments still taught primarily C or Pascal,
with maybe some Lisp if

you took an AI class.)
Also, the C++ compilers of the day did not provide fine control
over

automatic code generation,¹ and since
even saving 4KB of memory had a perceptible impact

on overall
system performance,
manually grouping rarely-used functions into the same

region of memory
of memory (so they could all remain paged out)
was still a common

practice.

But even if the shell was originally written in C++,
exporting the base classes wouldn’t have

been a good idea.
COM is a language-neutral platform.
People have written COM objects in

C, C++,
Visual Basic, C#, Delphi, you-name-it.
If IShellFolder were an exported C++ base

class,
then you have effectively said,
“Sorry, only C++ code can implement IShellFolder .

Screw off, all you other languages!”

But wait, it’s worse than just that.
Exporting a C++ base class ties you to a specific compiler

vendor,
because
name decoration is not standardized.
So it’s not just “To implement

IShellFolder you must
use C++”
but
“To implement IShellFolder you must use
the

Microsoft Visual Studio C++ compiler.”

But wait, it’s worse than just that.
The name decoration algorithm can even change between

compiler
versions.
Furthermore,
the mechanism by which exceptions are thrown and caught

is not merely
compiler-specific but compiler-version specific.
If an exception is thrown by

code compiled by one version of the
C++ compiler and reaches code compiled by a different

version of
the C++ compiler, the results are undefined.
(For example, the older version of the

C++ compiler may not have
supported RTTI.)
So it’s not just “To implement IShellFolder

you must
use C++”
but
“To implement IShellFolder you must use
Microsoft Visual C++

2.0.”
(So maybe
Bjarne was right after all.)

But wait, it’s worse than just that.
Exporting a C++ base class means that the base class
can

never change,
because various properties of the base class become hard-coded
into the

derived classes.
The list of interfaces implemented by the base class becomes fixed.
The size

of the base class is fixed.
Any inline methods are fixed.
The precise layout of member

variables is fixed.
Exporting a C++ base class for IShellFolder would have
meant that the

base class could never change.
You want support for IShellFolder2 ?
Sorry, we can’t add

that without breaking everybody who compiled
with the old header file.

Exercise: If exporting base classes is so horrible,
why does the CLR do it all over the place?

Footnote

http://blogs.msdn.com/b/oldnewthing/archive/2003/10/10/55256.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2006/07/27/679634.aspx
http://blogs.msdn.com/b/oldnewthing/archive/2010/06/07/10020654.aspx

4/4

¹ Actually, I don’t think even the C++ compilers of today
give you fine control over automatic

code generation,
which is why
Microsoft takes a conservative position on use of C++ in kernel

mode,
where the consequences of a poorly-timed page fault are much worse
than simply poor

performance.
It will bluescreen your machine.

Raymond Chen

Follow

http://www.microsoft.com/whdc/driver/kernel/KMcode.mspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

